Journal of the Chinese Ceramic Society, Volume. 51, Issue 10, 2673(2023)

Highly Efficient Photo-Fenton BiOI/MIL-100(Fe) Heterojunction for Promoted Degradation of Tetracycline

ZHENG Jingjing*, WANG Ruihao, HE Yingzi, and LI Yaping
Author Affiliations
  • [in Chinese]
  • show less
    References(36)

    [1] [1] RODRIGUEZ-MOZAZ S, CHAMORRO S, MARTI E, et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river[J]. Water Res, 2015, 69: 234-242.

    [2] [2] KMMERER K. Antibiotics in the aquatic environment: A review: part II[J]. Chemosphere, 2009, 75(4): 435-441.

    [3] [3] BOXALL J B, SAUL A J, GUNSTEAD J D, et al. Regeneration of discolouration in distribution systems[C]//World Water & Environmental Resources Congress 2003. Philadelphia, Pennsylvania, USA. Reston, VA: American Society of Civil Engineers, 2003: 434-442.

    [6] [6] CHAN S H S, WU T Y, JUAN J C, et al. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water[J]. J Chem Technol Biotechnol, 2011, 86(9): 1130-1158.

    [7] [7] LI Y X, HAN Y C, WANG C C. Fabrication strategies and Cr(VI) elimination activities of the MOF-derivatives and their composites[J]. Chem Eng J, 2021, 405: 126648.

    [8] [8] SHI W, DU D, SHEN B, et al. Synthesis of yolk-shell structured Fe3O4@void@CdS nanoparticles: A general and effective structure design for photo-Fenton reaction[J]. ACS Appl Mater Interfaces, 2016, 8(32): 20831-20838.

    [11] [11] GUO T, WANG K, ZHANG G K, et al. A novel α-Fe2O3@g-C3N4 catalyst: Synthesis derived from Fe-based MOF and its superior photo-Fenton performance[J]. Appl Surf Sci, 2019, 469: 331-339.

    [12] [12] HANG J, YI X H, WANG C C, et al. Heterogeneous photo-Fenton degradation toward sulfonamide matrix over magnetic Fe3S4 derived from MIL-100(Fe)[J]. J Hazard Mater, 2022, 424: 127415-127426.

    [13] [13] GONG Q J, LIU Y, DANG Z. Core-shell structured Fe3O4@[email protected](Fe) magnetic nanoparticles as heterogeneous photo-Fenton catalyst for 2, 4-dichlorophenol degradation under visible light[J]. J Hazard Mater, 2019, 371: 677-686.

    [14] [14] QIU J H, ZHANG X G, FENG Y, et al. Modified metal-organic frameworks as photocatalysts[J]. Appl Catal B Environ, 2018, 231: 317-342.

    [16] [16] ZHANG X W, WANG F, WANG C C, et al. Photocatalysis activation of peroxodisulfate over the supported Fe3O4 catalyst derived from MIL-88A(Fe) for efficient tetracycline hydrochloride degradation[J]. Chem Eng J, 2021, 426: 131927.

    [17] [17] ZHANG J W, ZHANG H T, DU Z Y, et al. Water-stable metal-organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform[J]. Chem Commun, 2014, 50(9): 1092-1094.

    [18] [18] MA J H, SONG W J, CHEN C C, et al. Fenton degradation of organic compounds promoted by dyes under visible irradiation[J]. Environ Sci Technol, 2005, 39(15): 5810-5815.

    [19] [19] ZHANG C F, QIU L G, KE F, et al. A novel magnetic recyclable photocatalyst based on a core-shell metal-organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye[J]. J Mater Chem A, 2013, 1(45): 14329-14334.

    [20] [20] XU J, XU J M, JIANG S Q, et al. Facile synthesis of a novel Ag3PO4/MIL-100(Fe) Z-scheme photocatalyst for enhancing tetracycline degradation under visible light[J]. Environ Sci Pollut Res Int, 2020, 27(30): 37839-37851.

    [21] [21] WANG Y X, ZHONG Z, MUHAMMAD Y, et al. Defect engineering of NH2-MIL-88B(Fe) using different monodentate ligands for enhancement of photo-Fenton catalytic performance of acetamiprid degradation[J]. Chem Eng J, 2020, 398: 125684.

    [22] [22] KE F, WANG L H, ZHU J F. Facile fabrication of CdS-metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation[J]. Nano Res, 2015, 8(6): 1834-1846.

    [23] [23] SHI L, WANG T, ZHANG H B, et al. An amine-functionalized iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction[J]. Adv Sci, 2015, 2(3): 1500006.

    [24] [24] WANG D K, LI Z H. Coupling MOF-based photocatalysis with Pd catalysis over[email protected](Fe) for efficient N-alkylation of amines with alcohols under visible light[J]. J Catal, 2016, 342: 151-157.

    [25] [25] WANG D K, PAN Y T, XU L Z, et al. Email protected](Fe) cooperatively catalyze tandem reactions between amines and alcohols for efficient N-alkyl amines syntheses under visible light[J]. J Catal, 2018, 361: 248-254.

    [26] [26] LIANG R W, SHEN L J, JING F F, et al. Preparation of MIL-53(Fe)-reduced graphene oxide nanocomposites by a simple self-assembly strategy for increasing interfacial contact: Efficient visible-light photocatalysts[J]. ACS Appl Mater Interfaces, 2015, 7(18): 9507-9515.

    [27] [27] ZHANG C H, AI L H, JIANG J. Graphene hybridized photoactive iron terephthalate with enhanced photocatalytic activity for the degradation of rhodamine B under visible light[J]. Ind Eng Chem Res, 2015, 54(1): 153-163.

    [28] [28] ASLAM S, ZENG J B, SUBHAN F, et al. In situ one-step synthesis of Fe3O4@MIL-100(Fe) core-shells for adsorption of methylene blue from water[J]. J Colloid Interface Sci, 2017, 505: 186-195.

    [29] [29] WANG Y T, HE L Y, DANG G Y, et al. Preparation of Fe-MIL(100)- encapsulated magnetic g-C3N4 for adsorption of PPCPs from aqueous solution[J]. Environ Sci Pollut Res Int, 2021, 28(29): 39769-39786.

    [30] [30] ZHAO C, WANG J S, CHEN X, et al. Bifunctional Bi12O17Cl2/ MIL-100(Fe) composites toward photocatalytic Cr(VI) sequestration and activation of persulfate for bisphenol A degradation[J]. Sci Total Environ, 2021, 752: 141901.

    [31] [31] WANG D D, LI H J, HAN Q, et al. Optimized design of BiVO4/NH2-MIL-53(Fe) heterostructure for enhanced photocatalytic degradation of methylene blue and ciprofloxacin under visible light[J]. J Phys Chem Solids, 2021, 154: 110027.

    [32] [32] HE R A, XU D F, CHENG B, et al. Review on nanoscale Bi-based photocatalysts[J]. Nanoscale Horiz, 2018, 3(5): 464-504.

    [33] [33] XIAO J, DENG K Q, LIU Z, et al. A photocathode based on BiOI-Bi/CNTs for microRNA detection coupling with target recycling strand displacement amplification[J]. Sens Actuat B Chem, 2021, 348: 130691.

    [34] [34] MA Y H, LI M Y, JIANG J J, et al. In-situ prepared MIL-53(Fe)/BiOI photocatalyst for efficient degradation of tetracycline under visible-light driven photo-Fenton system: Investigation of performance and mechanism[J]. J Alloys Compd, 2021, 870: 159524.

    [35] [35] WANG X, ZHU J Q, FU X H, et al. Boosted visible-light photocatalytic performance of Au/BiOCl/BiOI by high-speed spatial electron transfer channel[J]. J Alloys Compd, 2022, 890: 161736.

    [36] [36] YOON J W, SEO Y K, HWANG Y K, et al. Controlled reducibility of a metal-organic framework with coordinatively unsaturated sites for preferential gas sorption[J]. Angew Chem Int Ed Engl, 2010, 49(34): 5949-5952.

    [37] [37] ZHENG J J, JIAO Z B. Magnetic recyclable bismuth oxyiodide/ polyacrylic anion exchange resin composites with enhanced photocatalytic activity under visible light[J]. J Colloid Interface Sci, 2017, 504: 620-625.

    [38] [38] ZHENG J J, JIAO Z B. Modified Bi2WO6 with metal-organic frameworks for enhanced photocatalytic activity under visible light[J]. J Colloid Interface Sci, 2017, 488: 234-239.

    [39] [39] SHAMAILA S, SAJJAD A K L, CHEN F, et al. WO3/BiOCl, a novel heterojunction as visible light photocatalyst[J]. J Colloid Interface Sci, 2011, 356(2): 465-472.

    Tools

    Get Citation

    Copy Citation Text

    ZHENG Jingjing, WANG Ruihao, HE Yingzi, LI Yaping. Highly Efficient Photo-Fenton BiOI/MIL-100(Fe) Heterojunction for Promoted Degradation of Tetracycline[J]. Journal of the Chinese Ceramic Society, 2023, 51(10): 2673

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 25, 2013

    Accepted: --

    Published Online: Nov. 26, 2023

    The Author Email: ZHENG Jingjing (zjj65050@163.com)

    DOI:

    CSTR:32186.14.

    Topics