Spacecraft Recovery & Remote Sensing, Volume. 46, Issue 4, 59(2025)

The Standardized Multi-Modal Sample Dataset Organization Method and Application for Artificial Intelligence Interpretation

Junqi ZHAO1,2, Xiaofei MI2,3、*, Jian YANG2,3, Tao YU2,3, Xiaomin TIAN4, Chuanzhao TIAN4, Hongbo ZHU2,3, and Chuan LIU5,6
Author Affiliations
  • 1School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
  • 2Aerospace Information Researchlnstitute, Chinese Academy of Sciences, Beijing 100094, China
  • 3Demonstration Center for Spaceborne Remote Sensing, China National Space Administration, Beijing 100101, China
  • 4School of Remote Sensing and Information Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China
  • 5Langfang Research and Development Center for Spatial information Technology, Langfang 065099, China
  • 6Zhongke Xingtong (Langfang) Information Technology Co., Ltd., Langfang 065000, China
  • show less
    References(18)

    [3] [3] ZHU H G, CHEN X G, DAI W Q, et al. ientation Robust Object Detection in Aerial Images Using Deep Convolutional Neural wk[C]2015 IEEE International Conference on Image Processing (ICIP). Quebec City, QC, Canada: IEEE, 2015: 37353739. DOI: 10.1109ICIP.2015.7351502.

    [4] [4] XIA G S, BAI X, DING J, et al. DOTA: A LargeScale Dataset f Object Detection in Aerial Images[C]2018 IEEECVF Conference on Computer Vision Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 39743983. DOI: 10.1109CVPR.2018.00418.

    [7] [7] SHERMEYER J, HOSSLER T, ETTEN A V, et al. RarePlanes: Synthetic Data Takes Flight[C]2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa, HI, USA: IEEE, 2021: 207217. DOI: 10.1109WACV48630.2021.00025.

    [10] [10] SUMBUL G, FUELAN M, DEMIR B, et al. Bigearth: a LargeScale Benchmark Archive f Remote Sensing Image Understing[C]IGARSS 2019—2019 IEEE International Geoscience Remote Sensing Symposium. Yokohama, Japan: IEEE, 2019: 59015904. DOI: 10.1109IGARSS.2019.8900532.

    [12] [12] MAGGII E, TARABALKA Y, PIAT G, et al. Can Semantic Labeling Methods Generalize to Any City The Inria Aerial Image Labeling Benchmark[C]2017 IEEE International Geoscience Remote Sensing Symposium (IGARSS). Ft Wth, TX, USA: IEEE, 2017: 32263229. DOI: 10.1109IGARSS.2017.8127684.

    [18] [18] WEBER E, KANÉ H. Building Disaster Damage Assessment in Satellite Imagery With Multitempal Fusion[DBOL]. arXiv, 2020: 05525(20200412) [20241026]. https:arxiv.gabs2004.05525.

    [19] [19] FUJITA A, SAKURADA K, IMAIZUMI T, et al. Damage Detection From Aerial Images Via Convolutional Neural wks[C]2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA). Nagoya, Japan: IEEE, 2017: 58. DOI: 10.23919MVA.2017.7986759.

    [20] [20] BOURDIS N, MARRAUD D, SAHBI H. Constrained Optical Flow f Aerial Image Change Detection[C]2011 IEEE International Geoscience Remote Sensing Symposium. Vancouver, BC, Canada: IEEE, 2011: 41764179. DOI: 10.1109IGARSS.2011.6050150.

    Tools

    Get Citation

    Copy Citation Text

    Junqi ZHAO, Xiaofei MI, Jian YANG, Tao YU, Xiaomin TIAN, Chuanzhao TIAN, Hongbo ZHU, Chuan LIU. The Standardized Multi-Modal Sample Dataset Organization Method and Application for Artificial Intelligence Interpretation[J]. Spacecraft Recovery & Remote Sensing, 2025, 46(4): 59

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing Information Processing Technology

    Received: Jan. 26, 2025

    Accepted: Jan. 26, 2025

    Published Online: Sep. 12, 2025

    The Author Email: Xiaofei MI (mixf@aircas.ac.cn)

    DOI:10.3969/j.issn.1009-8518.2025.04.006

    Topics