Photonics Research, Volume. 2, Issue 5, 111(2014)
Perovskite-based low-cost and high-efficiency hybrid halide solar cells
[1] S. B. Darling, F. Q. You, T. Veselka, A. Velosa. Assumptions and the levelized cost of energy for photovoltaics. Energy Environ. Sci., 4, 3133-3139(2011).
[2] D. J. Yue, P. Khatav, F. Q. You, S. B. Darling. Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics. Energy Environ. Sci., 5, 9163-9172(2012).
[3] (2013).
[4] K. Efthymios, R. Bryce. Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer. Prog. Photovoltaics Res. Appl., 19, 345-351(2011).
[6] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovoltaics Res. Appl., 19, 894-897(2011).
[8] C. J. Hibberd, E. Chassaing, W. Liu, D. B. Mitzi, D. Lincot. Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers. Prog. Photovoltaics Res. Appl., 18, 434-452(2010).
[9] W. M. Robert, Z. Guillaume, F. Ian. Inorganic photovoltaic cells. Mater. Today, 10, 20-27(2007).
[12] J. Y. Cong, X. C. Yang, L. Kloo, L. C. Sun. Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells. Energy Environ. Sci., 5, 9180-9194(2012).
[13] N. Tetreault, M. Grätzel. Novel nanostructures for next generation dye-sensitized solar cells. Energy Environ. Sci., 5, 8506-8516(2012).
[22] Q. L. Huang, G. Zhou, L. Fang, L. P. Hua, Z. S. Wang. TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells. Energy Environ. Sci., 4, 2145-2151(2011).
[31] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2, 591(2012).
[33] K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, H. J. Snaith. Sub-150°C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci., 7, 1142-1147(2014).
[39] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett., 13, 1764-1769(2013).
[44] J. M. Ball, M. M. Lee, A. Hey, H. J. Snaith. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci., 6, 1739-1743(2013).
[49] D. Q. Bi, S. J. Moon, L. Häggman, G. Boschloo, L. Yang. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2mesostructures. RSC Adv., 3, 18762-18766(2013).
[59] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci., 7, 982-988(2014).
[82] Q. Xu, T. Educhi, H. Nakayama, N. Nakamura, M. Kishita. Molecular motions and phase transitions in solid CH3NH3PbX3 (X = Cl, Br, I) as studied by NMR and NQR. Z. Naturforsch., 46, 240-246(1991).
[105] P. Langevin. Recombinaison et mobilites des ions dans les gaz. Ann. Chim. Phys., 28, 433-530(1903).
Get Citation
Copy Citation Text
Jiandong Fan, Baohua Jia, and Min Gu, "Perovskite-based low-cost and high-efficiency hybrid halide solar cells," Photonics Res. 2, 111 (2014)
Received: May. 12, 2014
Accepted: Jul. 9, 2014
Published Online: Nov. 5, 2014
The Author Email: and Min Gu (mgu@swin.edu.au)