Journal of Synthetic Crystals, Volume. 51, Issue 5, 759(2022)

Progress of Chemical Vapor Deposition (CVD) Diamond

LI Chengming*, REN Feitong, SHAO Siwu, MU Lianxi, ZHANG Qinrui, HE Jian, ZHENG Yuting, LIU Jinlong, WEI Junjun, CHEN Liangxian, and LYU Fanxiu
Author Affiliations
  • [in Chinese]
  • show less
    References(129)

    [7] [7] ZHENG Y T, LI C M, LIU J L, et al. Diamond with nitrogen: states, control, and applications[J]. Functional Diamond, 2021, 1(1): 63-82.

    [9] [9] ROBLEDO L, CHILDRESS L, BERNIEN H, et al. High-fidelity projective read-out of a solid-state spin quantum register[J]. Nature, 2011, 477(7366): 574-578.

    [11] [11] SIPAHIGIL A, EVANS R E, SUKACHEV D D, et al. An integrated diamond nanophotonics platform for quantum-optical networks[J]. Science, 2016, 354(6314): 847-850.

    [12] [12] BRADAC C, GAO W B, FORNERIS J, et al. Quantum nanophotonics with group IV defects in diamond[J]. Nature Communications, 2019, 10: 5625.

    [13] [13] ZHENG Y T, LI C M, LIU J L, et al. Chemical vapor deposited diamond with versatile grades: from gemstone to quantum electronics[J]. Frontiers of Materials Science, 2022, 16(1): 1-38.

    [14] [14] MANSON N B, HARRISON J P. Photo-ionization of the nitrogen-vacancy center in diamond[J]. Diamond & Related Materials, 2005, 14(10): 1705-1710.

    [15] [15] COLLINS A T. The Fermi level in diamond[J]. Journal of Physics: Condensed Matter, 2002, 14(14): 3743-3750.

    [16] [16] DOHERTY M W, MANSON N B, DELANEY P, et al. The nitrogen-vacancy colour centre in diamond[J]. Physics Reports, 2013, 528(1): 1-45.

    [17] [17] TAYLOR J M, CAPPELLARO P, CHILDRESS L, et al. High-sensitivity diamond magnetometer with nanoscale resolution[J]. Nature Physics, 2008, 4(10): 810-816.

    [20] [20] ZHOU J W, WANG P F, SHI F Z, et al. Quantum information processing and metrology with color centers in diamonds[J]. Frontiers of Physics, 2014, 9(5): 587-597.

    [21] [21] CUI J M, SUN F W, CHEN X D, et al. Quantum statistical imaging of particles without restriction of the diffraction limit[J]. Physical Review Letters, 2013, 110(15): 153901.

    [22] [22] ALKAHTANI M H, ALGHANNAM F, JIANG L K, et al. Fluorescent nanodiamonds: past, present, and future[J]. Nanophotonics, 2018, 7(8): 1423-1453.

    [24] [24] GOSS J P, JONES R, BREUER S J, et al. The twelve-line 1.682 eV luminescence center in diamond and the vacancy-silicon complex[J]. Physical Review Letters, 1996, 77(14): 3041-3044.

    [25] [25] HEPP C, MüLLER T, WASELOWSKI V, et al. Electronic structure of the silicon vacancy color center in diamond[J]. Physical Review Letters, 2014, 112(3): 036405.

    [26] [26] AHARONOVICH I. Silicon magic[J]. Nature Photonics, 2014, 8(11): 818-819.

    [28] [28] SONG J, LI H D, LIN F, et al. Plasmon-enhanced photoluminescence of Si-V centers in diamond from a nanoassembled metal: diamond hybrid structure[J]. CrystEngComm, 2014, 16(36): 8356.

    [29] [29] CHENG S H, SONG J, WANG Q L, et al. Plasmon resonance enhanced temperature-dependent photoluminescence of Si-V centers in diamond[J]. Applied Physics Letters, 2015, 107(21): 211905.

    [30] [30] SIPAHIGIL A, JAHNKE K D, ROGERS L J, et al. Indistinguishable photons from separated silicon-vacancy centers in diamond[J]. Physical Review Letters, 2014, 113(11): 113602.

    [31] [31] BHASKAR M K, SUKACHEV D D, SIPAHIGIL A, et al. Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide[J]. Physical Review Letters, 2017, 118(22): 223603.

    [32] [32] IWASAKI T, MIYAMOTO Y, TANIGUCHI T, et al. Tin-vacancy quantum emitters in diamond[J]. Physical Review Letters, 2017, 119(25): 253601.

    [33] [33] ZHANG H C, CHEN C K, MEI Y S, et al. Micron-sized diamond particles containing Ge-V and Si-V color centers[J]. Chinese Physics B, 2019, 28(7): 076103.

    [35] [35] DOHERTY M. Quantum accelerators: a new trajectory of quantum computers[J]. Digitale Welt, 2021, 5(2): 74-79.

    [36] [36] PEZZAGNA S, MEIJER J. Quantum computer based on color centers in diamond[J]. Applied Physics Reviews, 2021, 8(1): 011308.

    [37] [37] DONG Y, XU J Y, ZHANG S C, et al. Composite-pulse enhanced room-temperature diamond magnetometry[J]. Functional Diamond, 2021, 1(1): 125-134.

    [38] [38] BUCHER D B, AUDE CRAIK D P L, BACKLUND M P, et al. Quantum diamond spectrometer for nanoscale NMR and ESR spectroscopy[J]. Nature Protocols, 2019, 14(9): 2707-2747.

    [39] [39] BHASKAR M K, RIEDINGER R, MACHIELSE B, et al. Experimental demonstration of memory-enhanced quantum communication[J]. Nature, 2020, 580(7801): 60-64.

    [40] [40] ZHANG T T, PRAMANIK G, ZHANG K, et al. Toward quantitative bio-sensing with nitrogen-vacancy center in diamond[J]. ACS Sensors, 2021, 6(6): 2077-2107.

    [41] [41] LIN S R, WENG C F, YANG Y J, et al. Temperature-dependent coherence properties of NV ensemble in diamond up to 600 K[J]. Physical Review B, 2021, 104(15): 155430.

    [42] [42] CHEN N, MA H A, YAN B M, et al. Characterization of various centers in synthetic type ib diamond under HPHT annealing[J]. Crystal Growth & Design, 2018, 18(7): 3870-3876.

    [43] [43] LI S, CHOU J P, WEI J, et al. Oxygenated (113) diamond surface for nitrogen-vacancy quantum sensors with preferential alignment and long coherence time from first principles[J]. Carbon, 2019, 145: 273-280.

    [44] [44] ZHANG Q, GUO Y H, JI W T, et al. High-fidelity single-shot readout of single electron spin in diamond with spin-to-charge conversion[J]. Nature Communications, 2021, 12: 1529.

    [45] [45] LI Q, WANG J F, YAN F F, et al. Room temperature coherent manipulation of single-spin qubits in silicon carbide with a high readout contrast[J]. National Science Review, 2021.

    [46] [46] XIE T Y, ZHAO Z Y, KONG X, et al. Beating the standard quantum limit under ambient conditions with solid-state spins[J]. Science Advances, 2021, 7(32): eabg9204.

    [47] [47] SAKAR B, LIU Y, SIEVERS S, et al. Quantum calibrated magnetic force microscopy[J]. Physical Review B, 2021, 104(21): 214427.

    [48] [48] RODGERS L V H, HUGHES L B, XIE M Z, et al. Materials challenges for quantum technologies based on color centers in diamond[J]. MRS Bulletin, 2021, 46(7): 623-633.

    [54] [54] TAVARES C, OMNS F, PERNOT J, et al. Electronic properties of boron-doped{111}-oriented homoepitaxial diamond layers[J]. Diamond and Related Materials, 2006, 15(4/5/6/7/8): 582-585.

    [55] [55] ZHU X H, SHAO S W, CHANG Y H, et al. -400 mA mm-1 drain current density normally-off polycrystalline diamond MOSFETs[J]. IEEE Electron Device Letters, 0354, PP(99): 1.

    [62] [62] LIU D Y, HAO L C, TENG Y, et al. Nitrogen modulation of boron doping behavior for accessible n-type diamond[J]. APL Materials, 2021, 9(8): 081106.

    [63] [63] VOLPE P N, MURET P, PERNOT J, et al. Extreme dielectric strength in boron doped homoepitaxial diamond[J]. Applied Physics Letters, 2010, 97(22): 223501.

    [64] [64] TRAOR A, MURET P, FIORI A, et al. Zr/oxidized diamond interface for high power Schottky diodes[J]. Applied Physics Letters, 2014, 104(5): 052105.

    [65] [65] UMEZAWA H, IKEDA K, KUMARESAN R, et al. Increase in reverse operation limit by barrier height control of diamond Schottky barrier diode[J]. IEEE Electron Device Letters, 2009, 30(9): 960-962.

    [66] [66] FUNAKI T, HIRANO M, UMEZAWA H, et al. High temperature switching operation of a power diamond Schottky barrier diode[J]. IEICE Electronics Express, 2012, 9(24): 1835-1841.

    [67] [67] UEDA K, KAWAMOTO K, ASANO H. High-temperature and high-voltage characteristics of Cu/diamond Schottky diodes[J]. Diamond and Related Materials, 2015, 57: 28-31.

    [68] [68] KITABAYASHI Y, KUDO T, TSUBOI H, et al. Normally-off C-H diamond MOSFETs with partial C-O channel achieving 2-kV breakdown voltage[J]. IEEE Electron Device Letters, 2017, 38(3): 363-366.

    [69] [69] MASANTE C, PERNOT J, LETELLIER J, et al. 175V, >5.4 MV/Cm, 50 mΩ·cm2 at 250 ℃ diamond MOSFET and its reverse conduction[C]//2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD). May 19-23, 2019, Shanghai, China. IEEE, 2019: 151-154.

    [70] [70] IWASAKI T, HOSHINO Y, TSUZUKI K, et al. High-temperature operation of diamond junction field-effect transistors with lateral p-n junctions[J]. IEEE Electron Device Letters, 2013, 34(9): 1175-1177.

    [71] [71] SAHA N C, OISHI T, KIM S, et al. 145-MW/cm2 heteroepitaxial diamond MOSFETs with NO2 p-type doping and an Al2O3 passivation layer[J]. IEEE Electron Device Letters, 2020, 41(7): 1066-1069.

    [72] [72] HIRAMA K, SATO H, HARADA Y, et al. Diamond field-effect transistors with 1.3 A/mm drain current density by Al2O3 passivation layer[J]. Japanese Journal of Applied Physics, 2012, 51: 090112.

    [73] [73] YU X X, ZHOU J J, QI C J, et al. A high frequency hydrogen-terminated diamond MISFET with fT/fmax of 70/80 GHz[J]. IEEE Electron Device Letters, 2018, 39(9): 1373-1376.

    [74] [74] YU C, ZHOU C J, GUO J C, et al. RF performance of hydrogenated single crystal diamond MOSFETs[C]//2019 IEEE International Conference on Electron Devices and Solid-State Circuits. June 12-14, 2019, Xi’an, China. IEEE, 2019: 1-3.

    [75] [75] TADJER M J, ANDERSON T J, ANCONA M G, et al. GaN-on-diamond HEMT technology with TAVG=176 ℃ at PDC, max=56 W/mm measured by transient thermoreflectance imaging[J]. IEEE Electron Device Letters, 2019, 40(6): 881-884.

    [76] [76] LEE W S, WON LEE K, LEE S H, et al. A GaN/diamond HEMTs with 23 W/mm for next generation high power RF application[C]//2019 IEEE MTT-S International Microwave Symposium. June 2-7, 2019, Boston, MA, USA. IEEE, 2019: 1395-1398.

    [77] [77] CHAO P C, CHU K, CREAMER C, et al. Low-temperature bonded GaN-on-diamond HEMTs with 11 W/mm output power at 10 GHz[J]. IEEE Transactions on Electron Devices, 2015, 62(11): 3658-3664.

    [78] [78] ZHAO D, HU C, LIU Z C, et al. Diamond MIP structure Schottky diode with different drift layer thickness[J]. Diamond and Related Materials, 2017, 73: 15-18.

    [79] [79] ZHAO D, LIU Z C, ZHANG X F, et al. Analysis of diamond pseudo-vertical Schottky barrier diode through patterning tungsten growth method[J]. Applied Physics Letters, 2018, 112(9): 092102.

    [80] [80] ZHAO D, LIU Z C, WANG J, et al. Fabrication of dual-termination Schottky barrier diode by using oxygen-/ fluorine-terminated diamond[J]. Applied Surface Science, 2018, 457: 411-416.

    [81] [81] ZHAO D, LIU Z C, WANG J, et al. Reduction in reverse leakage current of diamond vertical Schottky barrier diode using SiNX field plate structure[J]. Results in Physics, 2019, 13: 102250.

    [82] [82] SHAO G Q, WANG J, LIU Z C, et al. Performance-improved vertical Zr/diamond Schottky barrier diode with lanthanum hexaboride interfacial layer[J]. IEEE Electron Device Letters, 2021, 42(9): 1366-1369.

    [83] [83] SANG D D, LI H D, CHENG S H, et al. Electrical transport behavior of n-ZnO nanorods/p-diamond heterojunction device at higher temperatures[J]. Journal of Applied Physics, 2012, 112(3): 036101.

    [84] [84] LI H D, SANG D D, CHENG S H, et al. Epitaxial growth of ZnO nanorods on diamond and negative differential resistance of n-ZnO nanorod/p-diamond heterojunction[J]. Applied Surface Science, 2013, 280: 201-206.

    [85] [85] WANG L Y, CHENG S H, WU C Z, et al. Fabrication and high temperature electronic behaviors of n-WO3 nanorods/p-diamond heterojunction[J]. Applied Physics Letters, 2017, 110(5): 052106.

    [86] [86] LI C M, LIU J L, CHEN L X, et al. An amazing semiconductor choice for high-frequency FET: h-terminated polycrystalline diamond film prepared by DC arc jet CVD[J]. Physica Status Solidi C, 2014, 11(11/12): 1692-1696.

    [87] [87] LIU J L, YU H, SHAO S W, et al. Carrier mobility enhancement on the H-terminated diamond surface[J]. Diamond and Related Materials, 2020, 104: 107750.

    [88] [88] REN Z Y, LIANG Z F, SU K, et al. Polycrystalline diamond normally-off MESFET passivated by a MoO3 layer[J]. Results in Physics, 2021, 20: 103760.

    [89] [89] REN Z Y, DING S C, LIANG Z F, et al. Diamond MOSFET with MoO3/Si3N4 doubly stacked gate dielectric[J]. Applied Physics Letters, 2022, 120(4): 042104.

    [90] [90] CUI A, ZHANG J F, REN Z Y, et al. Microwave power performance analysis of hydrogen terminated diamond MOSFET[J]. Diamond and Related Materials, 2021, 118: 108538.

    [91] [91] WANG Y F, WANG W, CHANG X H, et al. Hydrogen-terminated diamond field-effect transistor with a bilayer dielectric of HfSiO4/Al2O3[J]. Diamond and Related Materials, 2019, 99: 107530.

    [92] [92] ZHOU C J, WANG J J, GUO J C, et al. Radiofrequency performance of hydrogenated diamond MOSFETs with alumina[J]. Applied Physics Letters, 2019, 114(6): 063501.

    [93] [93] YU C, ZHOU C J, GUO J C, et al. 650 mW/mm output power density of H-terminated polycrystalline diamond MISFET at 10 GHz[J]. Electronics Letters, 2020, 56(7): 334-335.

    [94] [94] WANG Y F, WANG W, ABBASI H N, et al. LiF/Al2O3 as dielectrics for MOSFET on single crystal hydrogen-terminated diamond[J]. IEEE Electron Device Letters, 2020, 41(6): 808-811.

    [96] [96] CHENG S H, SANG L W, LIAO M Y, et al. Integration of high-dielectric constant Ta2O5 oxides on diamond for power devices[J]. Applied Physics Letters, 2012, 101(23): 232907.

    [97] [97] LIU K, ZHANG S, LIU B J, et al. Investigating the energetic band diagrams of oxygen-terminated CVD grown e6 electronic grade diamond[J]. Carbon, 2020, 169: 440-445.

    [98] [98] QIAO P F, LIU K, ZHANG S, et al. Origin of two-dimensional hole gas formation on Si-treated diamond surfaces: surface energy band diagram perspective[J]. Applied Surface Science, 2022, 584: 152560.

    [99] [99] ZHANG Z F, LIN C N, YANG X, et al. Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array[J]. Carbon, 2021, 173: 427-432.

    [100] [100] YAO K Y, YANG C, ZANG X N, et al. Carbon SP2-SP3 technology: graphene-on-diamond thin film UV detector[C]//2014 IEEE 27th International Conference on Micro Electro Mechanical Systems. January 26-30, 2014, San Francisco, CA, USA. IEEE, 2014: 1159-1162.

    [101] [101] LIU Z C, AO J P, LI F N, et al. Fabrication of three dimensional diamond ultraviolet photodetector through down-top method[J]. Applied Physics Letters, 2016, 109(15): 153507.

    [102] [102] LIU Z C, LIN F, ZHAO D, et al. Fabrication and characterization of (100)-oriented single-crystal diamond p-i-n junction ultraviolet detector[J]. Physica Status Solidi (a), 2020, 217(21): 2000207.

    [103] [103] XUE J J, LIU K, LIU B J, et al. UV-blue photodetectors based on n-SnOx/p-diamond heterojunctions[J]. Materials Letters, 2019, 257: 126621.

    [104] [104] GUO Y Z, LIU J L, LIU J W, et al. Comparison of α particle detectors based on single-crystal diamond films grown in two types of gas atmospheres by microwave plasma-assisted chemical vapor deposition[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(5): 703-712.

    [105] [105] GIROLAMI M, SERPENTE V, MASTELLONE M, et al. Self-powered solar-blind ultrafast UV-C diamond detectors with asymmetric Schottky contacts[J]. Carbon, 2022, 189: 27-36.

    [107] [107] EKIMOV E A, SIDOROV V A, BAUER E D, et al. Superconductivity in diamond[J]. Nature, 2004, 428(6982): 542-545.

    [108] [108] TAKANO Y, TAKENOUCHI T, ISHII S, et al. Superconducting properties of homoepitaxial CVD diamond[J]. Diamond and Related Materials, 2007, 16(4/5/6/7): 911-914.

    [109] [109] OKAZAKI H, WAKITA T, MURO T, et al. Signature of high Tc above 25 K in high quality superconducting diamond[J]. Applied Physics Letters, 2015, 106(5): 052601.

    [110] [110] WANG Z L, LUO Q, LIU L W, et al. The superconductivity in boron-doped polycrystalline diamond thick films[J]. Diamond and Related Materials, 2006, 15(4/5/6/7/8): 659-663.

    [111] [111] ZHANG G F, ZHOU Y H, KORNEYCHUK S, et al. Superconductor-insulator transition driven by pressure-tuned intergrain coupling in nanodiamond films[J]. Physical Review Materials, 2019, 3(3): 034801.

    [113] [113] TITOVA N, KARDAKOVA A I, TOVPEKO N, et al. Slow electron-phonon cooling in superconducting diamond films[J]. IEEE Transactions on Applied Superconductivity, 2016, 27(4): 1-4.

    [114] [114] YANG N J, YU S Y, MACPHERSON J V, et al. Conductive diamond: synthesis, properties, and electrochemical applications[J]. Chemical Society Reviews, 2019, 48(1): 157-204.

    [116] [116] SHI Z T, YUAN Q L, WANG Y Z, et al. Optical properties of bulk single-crystal diamonds at 80-1200 K by vibrational spectroscopic methods[J]. Materials, 2021, 14(23): 7435.

    [128] [128] SEREBRENNIKOV D, CLEMENTYEV E, SEMENOV A, et al. Optical performance of materials for X-ray refractive optics in the energy range 8-100 keV[J]. Journal of Synchrotron Radiation, 2016, 23(Pt 6): 1315-1322.

    [130] [130] ZHU J F, DU C H, BAO L Y, et al. Wideband output Brewster window for terahertz TWT amplifiers application[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(2): 133-136.

    [131] [131] ANDREEVA M S, ARTYUSHKIN N V, KRYMSKII M I, et al. Effect of CO2-laser power density on the absorption coefficient of polycrystalline CVD diamonds[J]. Quantum Electronics, 2020, 50(12): 1140-1145.

    [134] [134] SABELLA A, PIPER J A, MILDREN R P. 1240 nm diamond Raman laser operating near the quantum limit[J]. Optics Letters, 2010, 35(23): 3874-3876.

    [135] [135] BAI Z X, ZHAO C, QI Y Y, et al. Towards long-wave infrared lasing by diamond Raman conversion[C]//2020 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). August 2-6, 2020, Sydney, NSW, Australia. IEEE, 2020: 1-2.

    [138] [138] WILLIAMS R J, NOLD J, STRECKER M, et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond[J]. Laser & Photonics Reviews, 2015, 9(4): 405-411.

    [139] [139] BAI Z X, WILLIAMS R J, KITZLER O, et al. Diamond Brillouin laser in the visible[J]. APL Photonics, 2020, 5(3): 031301.

    [140] [140] ANTIPOV S, SABELLA A, WILLIAMS R J, et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2=15 beam[J]. Optics Letters, 2019, 44(10): 2506-2509.

    [141] [141] ANTIPOV S, WILLIAMS R J, SABELLA A, et al. Analysis of a thermal lens in a diamond Raman laser operating at 1.1 kW output power[J]. Optics Express, 2020, 28(10): 15232-15239.

    [150] [150] HUANG Y B, CHEN L X, SHAO S W, et al. The 7-in. freestanding diamond thermal conductive film fabricated by DC arc Plasma Jet CVD with multi-stage magnetic fields[J]. Diamond and Related Materials, 2022, 122: 108812.

    [152] [152] SUN H R, SIMON R B, POMEROY J W, et al. Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications[J]. Applied Physics Letters, 2015, 106(11): 111906.

    [153] [153] SUN H, LIU D, POMEROY J W, et al. GaN-on-diamond: Robust mechanical and thermal properties[J]. CS MANTECH, 2016, 2011 (5): 201-204.

    [154] [154] ZHOU Y, RAMANETI R, ANAYA J, et al. Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs[J]. Applied Physics Letters, 2017, 111(4): 041901.

    [155] [155] ZHOU Y, ANAYA J, POMEROY J, et al. Barrier-layer optimization for enhanced GaN-on-diamond device cooling[J]. ACS Applied Materials & Interfaces, 2017, 9(39): 34416-34422.

    [157] [157] LIU T T, KONG Y C, WU L S, et al. 3-inch GaN-on-diamond HEMTs with device-first transfer technology[J]. IEEE Electron Device Letters, 2017, 38(10): 1417-1420.

    [159] [159] GUO H X, KONG Y C, CHEN T S. Thermal simulation of high power GaN-on-diamond substrates for HEMT applications[J]. Diamond and Related Materials, 2017, 73: 260-266.

    [160] [160] LIANG J B, KOBAYASHI A, SHIMIZU Y, et al. Fabrication of GaN/diamond heterointerface and interfacial chemical bonding state for highly efficient device design[J]. Advanced Materials, 2021, 33(43): 2104564.

    [161] [161] SONG C, KIM J, CHO J. The effect of GaN epilayer thickness on the near-junction thermal resistance of GaN-on-diamond devices[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119992.

    [162] [162] WANG K, RUAN K, HU W B, et al. Room temperature bonding of GaN on diamond wafers by using Mo/Au nano-layer for high-power semiconductor devices[J]. Scripta Materialia, 2020, 174: 87-90.

    [163] [163] LU W, LI J, MIAO J Y, et al. Application of high-thermal-conductivity diamond for space phased array antenna[J]. Functional Diamond, 2021, 1(1): 189-196.

    [167] [167] DANG C Q, LU A L, WANG H Y, et al. Diamond semiconductor and elastic strain engineering[J]. Journal of Semiconductors, 2022, 43(2): 021801.

    [168] [168] ZHAO Y, LI C M, LIU J L, et al. The interface and mechanical properties of a CVD single crystal diamond produced by multilayered nitrogen doping epitaxial growth[J]. Materials, 2019, 12(15): 2492.

    [169] [169] AN K, CHEN L X, YAN X B, et al. Fracture behavior of diamond films deposited by DC arc plasma jet CVD[J]. Ceramics International, 2018, 44(11): 13402-13408.

    [170] [170] AN K, CHEN L X, YAN X B, et al. Fracture strength and toughness of chemical-vapor-deposited polycrystalline diamond films[J]. Ceramics International, 2018, 44(15): 17845-17851.

    [174] [174] GRUEN D M, ZUIKER C D, KRAUSS A R, et al. Carbon dimer, C2, as a growth species for diamond films from methane/hydrogen/argon microwave plasmas[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1995, 13(3): 1628-1632.

    [175] [175] GRUEN D M, KRAUSS A R, ZUIKER C D, et al. Characterization of nanocrystalline diamond films by core-level photoabsorption[J]. Applied Physics Letters, 1996, 68(12): 1640-1642.

    [176] [176] CHANDRAN M, KUMARAN C R, DUMPALA R, et al. Nanocrystalline diamond coatings on the interior of WC-Co dies for drawing carbon steel tubes: enhancement of tube properties[J]. Diamond and Related Materials, 2014, 50: 33-37.

    [179] [179] LIN Q, CHEN S L, SHEN B, et al. CVD diamond coated drawing dies: a review[J]. Materials and Manufacturing Processes, 2021, 36(4): 381-408.

    [180] [180] HE Y P, CUI Y X, SUN F H. Enhancement of adhesion strength and tribological performance of cvd diamond films on tungsten carbide substrates with high cobalt content via amorphous sic interlayers[J]. Surface Review and Letters, 2019, 26(9): 1950051.

    [181] [181] ZHANG T, FENG Q, YU Z Y, et al. Effect of mechanical pretreatment on nucleation and growth of HFCVD diamond films on cemented carbide tools with a complex shape[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105016.

    [183] [183] WHEELER J M, RAGHAVAN R, WEHRS J, et al. Approaching the limits of strength: measuring the uniaxial compressive strength of diamond at small scales[J]. Nano Letters, 2016, 16(1): 812-816.

    [184] [184] BANERJEE A, BERNOULLI D, ZHANG H T, et al. Ultralarge elastic deformation of nanoscale diamond[J]. Science, 2018, 360(6386): 300-302.

    [185] [185] NIE A M, BU Y Q, LI P H, et al. Approaching diamond’s theoretical elasticity and strength limits[J]. Nature Communications, 2019, 10: 5533.

    [186] [186] DANG C Q, CHOU J P, DAI B, et al. Achieving large uniform tensile elasticity in microfabricated diamond[J]. Science, 2021, 371(6524): 76-78.

    [187] [187] LIU C, SONG X Q, LI Q, et al. Superconductivity in compression-shear deformed diamond[J]. Physical Review Letters, 2020, 124(14): 147001.

    [188] [188] KAISER K, SCRIVEN L M, SCHULZ F, et al. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon[J]. Science, 2019, 365(6459): 1299-1301.

    [189] [189] YANG X G, YAO M G, WU X Y, et al. Novel superhard sp3 carbon allotrope from cold-compressed C70 peapods[J]. Physical Review Letters, 2017, 118(24): 245701.

    [190] [190] YUE Y H, GAO Y F, HU W T, et al. Hierarchically structured diamond composite with exceptional toughness[J]. Nature, 2020, 582(7812): 370-374.

    Tools

    Get Citation

    Copy Citation Text

    LI Chengming, REN Feitong, SHAO Siwu, MU Lianxi, ZHANG Qinrui, HE Jian, ZHENG Yuting, LIU Jinlong, WEI Junjun, CHEN Liangxian, LYU Fanxiu. Progress of Chemical Vapor Deposition (CVD) Diamond[J]. Journal of Synthetic Crystals, 2022, 51(5): 759

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 1, 2022

    Accepted: --

    Published Online: Jul. 7, 2022

    The Author Email: Chengming LI (chengmli@mater.ustb.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics