Chinese Journal of Lasers, Volume. 40, Issue 5, 504002(2013)
A Methodology on Time-Domain Fluorescence Diffuse Optical Tomography Based on GPU-Accelerated Monte-Carlo Modeling
[1] [1] F. H. Cai, S. L. He. Using graphics processing units to accelerate perturbation Monte Carlo simulation in a turbid medium[J]. J. Biomed. Opt., 2012, 17(4): 040502
[2] [2] A. Doronin, I. Meglinski. Online object oriented Monte Carlo computational tool for the needs of biomedical optics[J]. Biomed. Opt. Express, 2011, 2(9): 2461~2469
[3] [3] M. Freiberger, H. Egger, M. Liebmann et al.. High-performance image reconstruction in fluorescence tomography on desktop computers and graphic hardware[J]. Biomed. Opt. Express, 2011, 2(11): 3207~3222
[4] [4] E. Alerstam, T. Svensson, S. Andersson-Engels. Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration[J]. J. Biomed. Opt., 2008, 13(6): 060504
[5] [5] Q. Q. Fang, D. A. Boas.Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units[J]. Opt. Express, 2009, 17(22): 20178~20190
[6] [6] N. N. Ren, J. M. Liang, X. C. Qu et al.. GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues[J]. Opt. Express, 2010, 18(7): 6811~6823
[7] [7] G. T. Quan, H. Gong, Y. Deng et al.. Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing uints[J]. J. Biomed. Opt., 2011, 16(2): 026018
[8] [8] A. T. N. Kumar, S. B. Raymond, A. K. Dunn et al.. A time domain fluorescence tomography system for small animal imaging[J]. IEEE Trans. Med. Imaging, 2008, 27(8): 1152~1163
[9] [9] J. Chen, V. Venugopal, X. Intes. Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates[J]. Biomed. Opt. Express, 2011, 2(4): 871~886
[10] [10] F. Gao, J. Li, L. M. Zhang et al.. Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom[J]. Appl. Opt., 2010, 49(16): 3163~3172
[11] [11] F. Gao, H. J. Zhao, Y. Tanikawa et al.. A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography[J]. Opt. Express, 2006, 14(16): 7109~7124
[12] [12] L. H. Wang, S. L. Jacques, L. Q. Zheng. MCML-Monte Carlo modeling of light transport in multi-layered tissues[J]. Computer Methods and Programs in Biomedicine, 1995, 47(2): 131~146
[13] [13] L. V. Wang, H. Wu. Biomedical Optics: Principle and Imaging[M]. Hoboken: John Wiley & Sons, 2007
[14] [14] A. J. Welch, C. Gardner, R. R. Kortumetal. Propagation of fluorescent light[J]. Las.Surg. Med., 1997, 21(2): 166~178
[15] [15] X. Yi, W. T. Chen, L. H. Wu et al.. GPU-accelerated Monte-Carlo modeling for fluorescence propagation in turbid medium[C]. SPIE, 2012, 8216: 82160U
[16] [16] M. Matsumoto, T. Nishimura. Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator[J]. ACM Trans. Modeling and Computer Simulation, 1998, 8(1): 3~30
[17] [17] Q. Q. Fang. Mesh-based Monte Carlo method using fast ray-tracing in Plucker coordinates[J]. Biomed. Opt. Express, 2010, 1(1): 165~175
[18] [18] E. M.Balbs, P. J. French. Shape based Monte Carlo code for light transport in complex heterogeneous tissues[J]. Opt. Express, 2007, 15(21): 14086~14098
[19] [19] N. Platis, T. Theoharis. Fast ray-tetrahedron intersection using Plücker coordinates[J]. J. Graphics GPU Game Tools, 2003, 8(4): 37~48
Get Citation
Copy Citation Text
Yi Xi, Wu Linhui, Wang Xin, Chen Weiting, Zhang Limin, Zhao Huijuan, Gao Feng. A Methodology on Time-Domain Fluorescence Diffuse Optical Tomography Based on GPU-Accelerated Monte-Carlo Modeling[J]. Chinese Journal of Lasers, 2013, 40(5): 504002
Category: biomedical photonics and laser medicine
Received: Dec. 20, 2012
Accepted: --
Published Online: May. 7, 2013
The Author Email: Xi Yi (yixi@tju.edu.cn)