International Journal of Extreme Manufacturing, Volume. 7, Issue 4, 45502(2025)

Patagonian toothfish-inspired aluminum coordination hydrogel sensors for real-time rainfall monitoring

Guan Xiaoyu, Zhu Yanxia, Luo Jianxun, Wang Xuechuan, Gong Hao, Abosheasha Mohammed A, Zhang Bingyuan, Zheng Sai, Li Dongping, Han Qingxin, Ueda Motoki, and Ito Yoshihiro
References(63)

[1] [1] Ouaadi N et al. 2024. Intercomparison of very high-resolution surface soil moisture products over Catalonia (Spain).Remote Sens.Environ.309, 114225.

[2] [2] Qiao X J, Peng T, Sun N, Zhang C, Liu Q L, Zhang Y, Wang Y H and Nazir M S. 2023. Metaheuristic evolutionary deep learning model based on temporal convolutional network, improved aquila optimizer and random forest for rainfall-runoff simulation and multi-step runoff prediction.Expert Syst. Appl.229, 120616.

[3] [3] Liu Q L, Jian W B and Nie W. 2021. Rainstorm-induced landslides early warning system in mountainous cities based on groundwater level change fast prediction.Sustain. Cities Soc.69, 102817.

[4] [4] Li G, Li C L, Li G D, Yu D H, Song Z P, Wang H L, Liu X N, Liu H and Liu W X. 2022. Development of conductive hydrogels for fabricating flexible strain sensors.Small18, 2101518.

[5] [5] Hu L X et al. 2023. Hydrogel-based flexible electronics.Adv. Mater.35, 2205326.

[6] [6] Zeng Z F, Yang Y Q, Pang X W, Jiang B Y, Gong L X, Liu Z L, Peng L and Li S N. 2024. Lignin nanospheremodified MXene activated-rapid gelation of mechanically robust, environmental adaptive, highly conductive hydrogel for wearable sensors application.Adv. Funct. Mater.34, 2409855.

[7] [7] Qi H N, Jing X L, Hu Y L, Wu P, Zhang X J, Li Y T, Zhao H K, Ma Q L, Dong X T and Mahadevan C K. 2025. Electrospun green fluorescent-highly anisotropic conductive Janus-type nanoribbon hydrogel array film for multiple stimulus response sensors.CompositesB288, 111933.

[8] [8] Yan L W, Zhou T, Han L, Zhu M Y, Cheng Z, Li D, Ren F Z, Wang K F and Lu X. 2021. Conductive cellulose bionanosheets assembled biostable hydrogel for reliable bioelectronics.Adv. Funct. Mater.31, 2010465.

[9] [9] Cui W, Zheng Y, Zhu R J, Mu Q F, Wang X Y, Wang Z S, Liu S Q, Li M and Ran R. 2022. Strong tough conductive hydrogels via the synergy of ion-induced cross-linking and salting-out.Adv. Funct. Mater.32, 2204823.

[10] [10] Cheng T, Zhang Y Z, Wang S, Chen Y L, Gao S Y, Wang F, Lai W Y and Huang W. 2021. Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors.Adv. Funct. Mater.31, 2101303.

[11] [11] Zhang H Y, Yang Q N, Xu L J, Li N, Tan H H, Du J J, Yu M L and Xu J X. 2024. Triboelectric nanogenerators based on hydrated lithium ions incorporated double-network hydrogels for biomechanical sensing and energy harvesting at low temperature.Nano Energy125, 109521.

[12] [12] Guan X Y et al. 2024. Mineral tanning-inspired metal ions coordination hydrogels with outstanding mechanical strength and toughness for flexible force sensors.Adv. Funct. Mater.34, 2313633.

[13] [13] Guan X Y et al. 2024. Shutters-Inspired metal ions coordination hydrogel Strain/Pressure sensor for joint behavior evaluation and flatfeet correction.Chem. Eng. J.489, 151353.

[14] [14] Jiang Y Z, Venkatesan H, Shi S, Wang C, Cui M, Zhang Q, Tan L and Hu J L. 2023. Spider-capture-silk mimicking fibers with high-performance fog collection derived from superhydrophilicity and volume-swelling of gelatin knots.Collagen Leather5, 4.

[15] [15] Ambekar R S, Kushwaha B, Sharma P, Bosia F, Fraldi M, Pugno N M and Tiwary C S. 2021. Topologically engineered 3D printed architectures with superior mechanical strength.Mater. Today48, 72–94.

[16] [16] Lian Z Z, Zhou J H, Ren W F, Chen F Z, Xu J K, Tian Y L and Yu H D. 2024. Recent progress in bio-inspired macrostructure array materials with special wettability—from surface engineering to functional applications.Int. J. Extrem. Manuf.6, 012008.

[17] [17] Thosar A U, Shalom Y, Braslavsky I, Drori R and Patel A J. 2023. Accumulation of antifreeze proteins on ice is determined by adsorption.J. Am. Chem. Soc.145, 17597–17602.

[18] [18] Ampaw A. 2022. Antifreeze proteins solve cold problems.Nat. Chem.14, 1336.

[19] [19] Deleray A C, Saini S S, Wallberg A C and Kramer J R. 2024. Synthetic antifreeze glycoproteins with potent ice-binding activity.Chem. Mater.36, 3424–3434.

[20] [20] Zhang Y, Jiao L, Yang W J, Xie C F and Jiang H L. 2021. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction.Angew. Chem., Int. Ed.60, 7607–7611.

[21] [21] Li Y X and Xie X M. 2023. One-step synthesis of intelligent ionohydrogels toughened with carboxyl-Al3+ coordination facilitated by ionic liquids.Polymer283, 126223.

[22] [22] Li H J, Zheng H, Tan Y J, Tor S B and Zhou K. 2021. Development of an ultrastretchable double-network hydrogel for flexible strain sensors.ACS Appl. Mater. Interfaces13, 12814–12823.

[23] [23] Huang C, Miao Q Q, Chen Y H, Zhang Q, He X, Li L and Liu X G. 2022. Highly robust, sensitive, antifreezing, and drying-tolerant polyacrylamide/gelatin/Zr4+ hydrogels as flexible strain sensors.ACS Appl. Polym. Mater.4, 8613–8622.

[24] [24] Li B, Li Z Q and Li H R. 2022. Ultrastretchable luminescent nanocomposite hydrogel with self-healing behavior.ACS Appl.Polym. Mater.4, 2329–2336.

[25] [25] Huang Y W, Xiao L Y, Zhou J, Liu T, Yan Y Q, Long S J and Li X F. 2021. Strong tough polyampholyte hydrogels via the synergistic effect of ionic and metal-ligand bonds.Adv. Funct. Mater.31, 2103917.

[26] [26] Li R R, Ren J, Zhang M M, Li M, Li Y and Yang W. 2024. Highly stretchable, fast self-healing, self-adhesive, and strain-sensitive wearable sensor based on ionic conductive hydrogels.Biomacromolecules25, 614–625.

[27] [27] Choi S, Choi Y and Kim J. 2019. Anisotropic hybrid hydrogels with superior mechanical properties reminiscent of tendons or ligaments.Adv. Funct. Mater.29, 1904342.

[28] [28] Li T T, Hu X M, Zhang Q S, Zhao Y Y, Wang P, Wang X, Qin B T and Lu W. 2020. Poly (acrylic acid)-chitosan @ tannic acid double-network self-healing hydrogel based on ionic coordination.Polym. Adv. Technol.31, 1648–1660.

[29] [29] Liu Z X, Liang G J, Zhan Y X, Li H F, Wang Z F, Ma L T, Wang Y K, Niu X R and Zhi C Y. 2019. A soft yet devicelevel dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte.Nano Energy58, 732–742.

[30] [30] Pan J Z, Jin Y, Lai S Q, Shi L J, Fan W H and Shen Y C. 2019. An antibacterial hydrogel with desirable mechanical, self-healing and recyclable properties based on triple-physical crosslinking.Chem. Eng. J.370, 1228–1238.

[31] [31] Zhang J C, Zhuang J S, Lei L R and Hou Y. 2023. Rapid preparation of a self-adhesive PAA ionic hydrogel using lignin sulfonate-Al3+ composite systems for flexible moisture-electric generators.J. Mater. Chem.A11, 3546–3555.

[32] [32] Jiang H Y, Fan L X, Yan S, Li F B, Li H J and Tang J G. 2019. Tough and electro-responsive hydrogel actuators with bidirectional bending behavior.Nanoscale11, 2231–2237.

[33] [33] Yin J Y, Pan S X, Wu L L, Tan L Y N, Chen D, Huang S, Zhang Y H and He P X. 2020. A self-adhesive wearable strain sensor based on a highly stretchable, tough, self-healing and ultra-sensitive ionic hydrogel.J. Mater. Chem.C8, 17349–17364.

[34] [34] Zheng W J, An N, Yang J H, Zhou J X and Chen Y M. 2015. Tough Al-alginate/poly (N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics.ACS Appl. Mater. Interfaces7, 1758–1764.

[35] [35] Zhang Z, Wang X D, Liu T, Liu L, Yu C L, Tian Y L, Zhang X X and Shen J. 2022. Al3+ coordinated chitosan hydrogel with ultrahigh water absorbency and environmental response.Mater. Des.214, 110390.

[36] [36] Sun Y F, Thakur V K and Luo R. 2024. High mechanical strength, strong adhesion, self-healing and conductive ionic hydrogels for motion detection.Polymer299, 126946.

[37] [37] Jiang H Y, Hao Z X, Zhang J F, Tang J G and Li H J. 2023. Bioinspired swelling enhanced hydrogels for underwater sensing.Colloids Surf.A664, 131197.

[38] [38] Li Z X, Chen J Y, Wu Y, Huang Z Y, Wu S T, Chen Y, Gao J, Hu Y and Huang C. 2022. Effect of downstream processing on the structure and rheological properties of xanthan gum generated by fermentation of Melaleuca alternifolia residue hydrolysate.Food Hydrocoll.132, 107838.

[39] [39] Hafeez S, Aldana A A, Duimel H, Ruiter F A A, Decarli M C, Lapointe V, van Blitterswijk C, Moroni L and Baker M B. 2023. Molecular tuning of a benzene-1,3,5-tricarboxamide supramolecular fibrous hydrogel enables control over viscoelasticity and creates tunable ECM-mimetic hydrogels and bioinks.Adv. Mater.35, 2207053.

[40] [40] Zhao C K et al. 2023. Nanofibrous polypeptide hydrogels with collagen-like structure as biomimetic extracellular matrix.Collagen Leather5, 3.

[41] [41] Hughes S M, Aykanat A, Pierini N G, Paiva W A, Weeks A A, Edwards A S, Durant O C and Oldenhuis N J. 2024. DNA-intercalating supramolecular hydrogels for tunable thermal and viscoelastic properties.Angew. Chem., Int. Ed.63, e202411115.

[42] [42] Zhang J et al. 2023. All-organic polymeric materials with high refractive index and excellent transparency.Nat. Commun.14, 3524.

[43] [43] Eklund A, Zhang H, Zeng H, Priimagi A and Ikkala O. 2020. Fast switching of bright whiteness in channeled hydrogel networks.Adv. Funct. Mater.30, 2000754.

[44] [44] Lyu Y, Guo R, Lin Z W, Zhai F, Wu T, Jiang P, Ji Z Y, Ma S H, Shi X Y and Wang X L. 2023. Ion clusters-driven strong and acid/alkali/freezing-tolerant conductive hydrogels for flexible sensors in extreme environments.Adv. Funct. Mater.33, 2306300.

[45] [45] Guo X, Dong X Y, Zou G J, Gao H J and Zhai W. 2023. Strong and tough fibrous hydrogels reinforced by multiscale hierarchical structures with multimechanisms.Sci. Adv.9, eadf7075.

[46] [46] Xu L J, Qiao Y and Qiu D. 2023. Coordinatively stiffen and toughen hydrogels with adaptable crystal-domain crosslinking.Adv. Mater.35, 2209913.

[47] [47] Ma J Z, Cheng Z J, Tan S, Zheng T and Zong Y. 2023. High performance strain sensor based on leather activated by microcracking conductive layer.Collagen Leather5, 25.

[48] [48] Peng F L et al. 2023. Guided bone regeneration in longbone defect with a bilayer mineralized collagen membrane.Collagen Leather5, 36.

[49] [49] Jiang Z B et al. 2023. Manufacturing N, O-carboxymethyl chitosan-reduced graphene oxide under freeze-dying for performance improvement of Li-S battery.Int. J. Extrem. Manuf.5, 015502.

[50] [50] Wychowaniec J K, Iliut M, Borek B, Muryn C, Mykhaylyk O O, Edmondson S and Vijayaraghavan A. 2021. Elastic flow instabilities and macroscopic textures in graphene oxide lyotropic liquid crystals.npj 2DMater. Appl.5, 11.

[51] [51] Manca M, Zhang C, de Melo Freire R V, Scheffold F and Salentinig S. 2023. Single particle investigation of triolein digestion using optical manipulation, polarized video microscopy, and SAXS.J. Colloid Interface Sci.649, 1039–1046.

[52] [52] Vislavath P, Billa S, Bahadur S P, Sudarshan J, Patro K, Tu R S K and Ratna D. 2022. Heterogeneous coordination environment and unusual self-assembly of ionic aggregates in a model ionomeric elastomer: effect of curative systems.Macromolecules55, 6739–6749.

[53] [53] Rahmati M et al. 2022. Intrinsically disordered peptides enhance regenerative capacities of bone composite xenografts.Mater. Today52, 63–79.

[54] [54] Zhang Q, Liu Y R, Li X C, Nie B S and Meng J Q 2023. Research on mechanical properties of loaded coal at the micro/nanoscale by coupling nanoindentation and SAXS experiments.

[55] [55] Huang T F et al. 2024. Performance and solution structures of side-chain-bridged oligo (ethylene glycol) polymer photocatalysts for enhanced hydrogen evolution under natural light illumination.Small20, 2304743.

[56] [56] Xu J C, Li Z H, Zhong Y Y, Zhou Q, Lv Q, Chen L, Blennow A and Liu X X. 2021. The effects of molecular fine structure on rice starch granule gelatinization dynamics as investigated byin situsmall-angle x-ray scattering.Food Hydrocoll.121, 107014.

[57] [57] Chen D W, Bai H Y, Zhu H Y, Zhang S W, Wang W and Dong W F. 2024. Anti-freezing, tough, and stretchable ionic conductive hydrogel with multi-crosslinked double-network for a flexible strain sensor.Chem. Eng. J.480, 148192.

[58] [58] Liu Y, Wang J, Hou P, Gao Z C, Liu Y, Zhao J N and Huo P F. 2024. Preparation of dual cross-linked hydrogel electrolytes containing modified lignin for supercapacitors and sensors.Chem. Eng. J.480, 148259.

[59] [59] Kim T, Park C, Samuel E P, An S, Aldalbahi A, Alotaibi F, Yarin A L and Yoon S S. 2021. Supersonically sprayed washable, wearable, stretchable, hydrophobic, and antibacterial rGO/AgNW fabric for multifunctional sensors and supercapacitors.ACS Appl. Mater. Interfaces13, 10013–10025.

[60] [60] Wang X F, Li X C, Wang B B, Chen J C, Zhang L, Zhang K, He M, Xue Y and Yang G H. 2022. Preparation of saltinduced ultra-stretchable nanocellulose composite hydrogel for self-powered sensors.Nanomaterials13, 157.

[61] [61] Miao C, Li P H, Yu J D, Xu X W, Zhang F and Tong G L. 2023. Dual network hydrogel with high mechanical properties, electrical conductivity, water retention and frost resistance, suitable for wearable strain sensors.Gels9, 224.

[62] [62] Zhang Z L et al. 2023. Fatigue-resistant conducting polymer hydrogels as strain sensor for underwater robotics.Adv. Funct. Mater.33, 2305705.

[63] [63] Cheng Y G et al. 2024. Chrysalis-inspired high-toughness lowmodulus conductive hydrogel sensor for intelligent sensing.Chem. Eng. J.498, 155475.

Tools

Get Citation

Copy Citation Text

Guan Xiaoyu, Zhu Yanxia, Luo Jianxun, Wang Xuechuan, Gong Hao, Abosheasha Mohammed A, Zhang Bingyuan, Zheng Sai, Li Dongping, Han Qingxin, Ueda Motoki, Ito Yoshihiro. Patagonian toothfish-inspired aluminum coordination hydrogel sensors for real-time rainfall monitoring[J]. International Journal of Extreme Manufacturing, 2025, 7(4): 45502

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Oct. 21, 2024

Accepted: Sep. 9, 2025

Published Online: Sep. 9, 2025

The Author Email:

DOI:10.1088/2631-7990/adb818

Topics