Acta Optica Sinica, Volume. 43, Issue 7, 0711001(2023)

Sequence-Controlled Pseudothermal Optical Ghost Imaging System

Yanfeng Zong... Huaibin Zheng*, Xinwei Wu, Jingwei Li, Long Qiu and Yuyuan Han |Show fewer author(s)
Author Affiliations
  • Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
  • show less
    References(42)

    [1] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429-R3432(1995).

    [2] Strekalov D V, Sergienko A V, Klyshko D N et al. Observation of two-photon “ghost” interference and diffraction[J]. Physical Review Letters, 74, 3600-3603(1995).

    [3] Bennink R S, Bentley S J, Boyd R W. Two-photon coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002).

    [4] Gatti A, Brambilla E, Bache M et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Physical Review Letters, 93, 093602(2004).

    [5] Scarcelli G, Berardi V, Shih Y. Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?[J]. Physical Review Letters, 96, 063602(2006).

    [6] Basano L, Ottonello P. Experiment in lensless ghost imaging with thermal light[J]. Applied Physics Letters, 89, 091109(2006).

    [7] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [8] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 79, 053840(2009).

    [9] Gao R K, Yan L S, Xu C X et al. Two key technologies influencing on computational ghost imaging quality[J]. Laser & Optoelectronics Progress, 58, 1811011(2021).

    [10] Yu H, Lu R H, Han S S et al. Fourier-transform ghost imaging with hard X rays[J]. Physical Review Letters, 117, 113901(2016).

    [11] Pelliccia D, Rack A, Scheel M et al. Experimental X-ray ghost imaging[J]. Physical Review Letters, 117, 113902(2016).

    [12] Zhang A X, He Y H, Wu L A et al. Table-top X-ray ghost imaging with ultra-low radiation[J]. Optica, 5, 374-377(2017).

    [13] Watts C M, Shrekenhamer D, Montoya J et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 8, 605-609(2014).

    [14] Diebold A V, Imani M F, Sleasman T et al. Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures[J]. Optica, 5, 1529-1541(2018).

    [15] Li S, Cropp F, Kabra K et al. Electron ghost imaging[J]. Physical Review Letters, 121, 114801(2018).

    [16] Khakimov R I, Henson B M, Shin D K et al. Ghost imaging with atoms[J]. Nature, 540, 100-103(2016).

    [17] Kingston A M, Myers G R, Pelliccia D et al. Neutron ghost imaging[J]. Physical Review A, 101, 053844(2020).

    [18] He Y H, Huang Y Y, Zeng Z R et al. Single-pixel imaging with neutrons[J]. Science Bulletin, 66, 133-138(2021).

    [19] Sun B, Edgar M P, Bowman R et al. 3D computational imaging with single-pixel detectors[J]. Science, 340, 844-847(2013).

    [20] Bai B, He Y C, Liu J B et al. Imaging around corners with single-pixel detector by computational ghost imaging[J]. Optik, 147, 136-142(2017).

    [21] Magaña-Loaiza O S, Howland G A, Malik M et al. Compressive object tracking using entangled photons[J]. Applied Physics Letters, 102, 231104(2013).

    [22] Jiang W J, Li X Y, Peng X L et al. Imaging high-speed moving targets with a single-pixel detector[J]. Optics Express, 28, 7889-7897(2020).

    [23] Sun S, Hu H K, Xu Y K et al. Simultaneously tracking and imaging a moving object under photon crisis[J]. Physical Review Applied, 17, 024050(2022).

    [24] Le M N, Wang G, Zheng H B et al. Underwater computational ghost imaging[J]. Optics Express, 25, 22859-22868(2017).

    [25] Yang M C, Wu Y, Feng G Y. Research progress on underwater ghost imaging[J]. Acta Optica Sinica, 42, 1701003(2022).

    [26] Zhang P L, Gong W L, Shen X et al. Correlated imaging through atmospheric turbulence[J]. Physical Review A, 82, 033817(2010).

    [27] Meyers R E, Deacon K S, Shih Y. Turbulence-free ghost imaging[J]. Applied Physics Letters, 98, 111115(2011).

    [28] Zhao C Q, Gong W L, Chen M L et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 101, 141123(2012).

    [29] Sun Z, Tuitje F, Spielmann C. Toward high contrast and high-resolution microscopic ghost imaging[J]. Optics Express, 27, 33652-33661(2019).

    [30] Feng Y S, Zhou C, Liu X et al. Study of multi-resolution microscopic correlation imaging based on optimized Hadamard matrix[J]. Acta Optica Sinica, 41, 2111001(2021).

    [31] Gong W L, Han S S. Correlated imaging in scattering media[J]. Optics Letters, 36, 394-396(2011).

    [32] Xu Y K, Liu W T, Zhang E F et al. Is ghost imaging intrinsically more powerful against scattering?[J]. Optics Express, 23, 32993-33000(2015).

    [33] Ferri F, Magatti D, Lugiato L A et al. Differential ghost imaging[J]. Physical Review Letters, 104, 253603(2010).

    [34] Sun B Q, Welsh S S, Edgar M P et al. Normalized ghost imaging[J]. Optics Express, 20, 16892-16901(2012).

    [35] Sun M J, Li M F, Wu L A. Nonlocal imaging of a reflective object using positive and negative correlations[J]. Applied Optics, 54, 7494-7499(2015).

    [36] Liu X F, Yao X R, Li M F et al. The role of intensity fluctuations in thermal ghost imaging[J]. Acta Physica Sinica, 62, 184205(2013).

    [37] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).

    [38] Gao C, Wang X Q, Wang Z F et al. Optimization of computational ghost imaging[J]. Physical Review A, 96, 023838(2017).

    [39] Chan K W C, O'Sullivan M N, Boyd R W. Optimization of thermal ghost imaging: high-order correlations vs. background subtraction[J]. Optics Express, 18, 5562-5573(2010).

    [40] Ferri F, Magatti D, Gatti A et al. High-resolution ghost image and ghost diffraction experiments with thermal light[J]. Physical Review Letters, 94, 183602(2005).

    [41] Gong W L, Zhang P L, Shen X et al. Ghost “pinhole” imaging in Fraunhofer region[J]. Applied Physics Letters, 95, 071110(2009).

    [42] Cao D Z, Xiong J, Zhang S H et al. Enhancing visibility and resolution in Nth-order intensity correlation of thermal light[J]. Applied Physics Letters, 92, 201102(2008).

    Tools

    Get Citation

    Copy Citation Text

    Yanfeng Zong, Huaibin Zheng, Xinwei Wu, Jingwei Li, Long Qiu, Yuyuan Han. Sequence-Controlled Pseudothermal Optical Ghost Imaging System[J]. Acta Optica Sinica, 2023, 43(7): 0711001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Sep. 30, 2022

    Accepted: Oct. 31, 2022

    Published Online: Apr. 6, 2023

    The Author Email: Huaibin Zheng (huaibinzheng@xjtu.edu.cn)

    DOI:10.3788/AOS221781

    Topics