Laser Technology, Volume. 46, Issue 1, 99(2022)

Research progress on the underwater wireless optical communication system

WANG Bo1, WU Qiong1, LIU Liqi1, WANG Tao1, ZHU Renjiang1, ZHANG Peng1, and WANG Lijie2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(81)

    [1] [1] KE X Zh, XI X L. Introduction to wireless laser communication[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2004: 1-27(in Chinese).

    [2] [2] LI X F. The Principle and technology of the satellite-to-ground laser communication links[M]. Beijing: National Defense Industry Press, 2007: 6-46(in Chinese).

    [3] [3] CHEN Y F. Experimental research on air-water wireless optical communication[D]. Hangzhou: Zhejiang University, 2018: 1-3(in Ch-inese).

    [4] [4] CHI N, HU F Ch, ZHOU Y J. The challenges and prospects of high-speed visible light communication technology[J]. ZTE Technology Journal, 2019, 25(5): 56-61(in Chinese).

    [5] [5] STOJANOVIC M. Recent advances in high-speed underwater acoustic communication[J]. IEEE Journal of Oceanic Engineering, 1996, 21(2):125-136.

    [6] [6] CHE X H, WELLS I, DICKERS G, et al. Re-evaluation of RF electromagnetic communication in underwater sensor networks[J]. IEEE Communications Magazine,2011, 48(12): 143-151.

    [7] [7] CHOWDHURY M Z, HOSSAN M T, ISLAM A, et al. A comparative survey of optical wireless technologies: Architectures and applications[J]. IEEE Access, 2018, 6: 9819-9840.

    [8] [8] XU X M. Development and applications of underwater acoustic communication and networks[J]. Technical Acoustics, 2009, 28(6): 811-816(in Chinese).

    [9] [9] LIU Z H, WU X F, XU J P, et al. Fifteen years of ocean observations with China Argo[J]. Advances in Earth Science, 2016, 31(5): 445-460(in Chinese).

    [10] [10] DUNTLEY S Q. Light in the Sea*[J]. Journal of the Optical Socie-ty of America, 1963, 53(2): 214-233.

    [11] [11] JACOBSON T. Phys104-how things work[EB/OL]. (2008-11-18)[2021-01-29]. http://www.physics.umd.edu/grt/taj/104a/104anotessupps.html.

    [12] [12] WANG J M, LU Ch H, LI S B, et al. 100m/500Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. Optic Express, 2019, 27(9): 12171-12181.

    [13] [13] WIENER T F, KARP S. The role of blue/green laser systems in strategic submarine communications[J]. IEEE Transactions on Communications, 1980, 28(9):1602-1607.

    [14] [14] TAN X Y. Role and future of laser technique for U-boat communication[J]. Laser Technology, 1993,17(4): 232-238(in Chinese).

    [15] [15] CHARLES C W. A 1Mbps underwater communication system using a 405nm laser diode and photomultiplier[D]. Raleigh, North Carolina, USA: North Carolina State University, 2007: 68-73.

    [16] [16] RADICS H. High bandwidth underwater optical communication[J]. Applied Optics, 2008, 47(2): 277-283.

    [17] [17] NAKAMURA K, MIZUKOSHI I, HANAWA M. Optical wireless transmission of 405nm, 1.45Gbit/s optical IM/DD-OFDM signals through a 4.8m underwater channel[J]. Optics Express, 2015, 23(2): 1558-1566.

    [18] [18] OUBEI H M, LI C P, PARK K H, et al. 2.3Gbit/s underwater wireless optical communications using directly modulated 520nm laser diode[J]. Optics Express, 2015, 16(23), 20743-20748.

    [19] [19] SAWA T. Study of adaptive underwater optical wireless communication with photomultiplier tube[R]. Suruga bay, Japan:Japan Agency for Marine-Earth Science and Technology, 2017: 1-15.

    [20] [20] HUANG X Sh, WANG R L, XU R Sh, et al. Underwater laser communication transmitting and receiving system[J]. Journal of Ocean University of Qingdao, 1998, 28(4): 140-145(in Chinese).

    [21] [21] HE N, LI H L, ZHANG D K, et al. The multiple diversity reception of signal under water in laser communication[J]. Laser & Infrared, 2002, 32(4): 228-229(in Chinese).

    [22] [22] CHEN Y F, KONG M W, ALI T, et al. 26m/5.5Gbit/s air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode[J]. Optics Express, 2017, 25(13): 14760-14765.

    [23] [23] HAN S Q, WANG Zh, CHEN H, et al. Image-based geometric shaping 16QAM DMT coded visible light communication[J]. China Light & Lighting, 2020(6): 16-21(in Chinese).

    [24] [24] CHEN M, ZOU P, ZHANG L, et al. Demonstration of a 2.34Gbit/s real-time single silicon-substrate blue LED based underwater VLC system[J]. IEEE Photonics Journal, 2020, 12(1): 7900211.

    [25] [25] KAUSHAL H, KADDOUM G. Underwater optical wireless communication[J]. IEEE Access, 2016, 4: 1518-1547.

    [26] [26] MOBLEY C D. Light and water: Radiative transfer in natural waters[M]. New York,USA: Academic Press, 1994: 1-5.

    [27] [27] JOHNSON L J, JASMAN F, GREEN R J, et al. Recent advances in underwater optical wireless communications[J]. Underwater Technology,2014, 32(3): 167-175.

    [28] [28] SPINRAD R W, CARDER K L, PERRY M J. Ocean optics[M]. Oxford,UK: Clarendon Press, 1994: 1-10.

    [29] [29] WU Q, WANG B, WANG T, et al. Monte Carlo method-based analysis of underwater wireless optical transmission characteristics[J]. Acta Photonica Sinica, 2021, 50(4): 0406002(in Chinese).

    [30] [30] GUSSEN C M G, DINIZ P S R, CAMPOS M L R, et al. A survey of underwater wireless communication technologies[J]. Journal of Communication and Information System, 2016, 31(1): 242-255.

    [31] [31] MOBLEY C D, GENTILI B, GORDON H R, et al. Comparison of numerical models for computing underwater light fields[J]. Applied Optics, 1993, 32(36): 7484-7504.

    [32] [32] WANG W, WANG P, CAO T, et al. Performance investigation of underwater wireless optical communication system using M-ary OAMSK modulation over oceanic turbulence [J]. IEEE Photonics Journal, 2017, 9(5): 1-15.

    [33] [33] HE G, L Zh J, QIU Ch F, et al. Performance evaluation of 520nm laser diode underwater wireless optical communication systems in the presence of oceanic turbulence[J]. SID Symposium Digest of Technical Papers, 2020, 51(s1): 47-50.

    [34] [34] FU Y Q, HUANG Ch T, DU Y Zh. Effect of aperture averaging on mean bit error rate for UWOC system over moderate to strong oceanic turbulence[J]. Optics Communications, 2019, 451: 6-12.

    [35] [35] WU J. Study and implementation of underwater wireless optical communication system[D]. Xiamen: Xiamen University, 2014: 31-38 (in Chinese).

    [36] [36] KONG M W. Design and experiment study of underwater wireless optical communication system[D]. Hangzhou: Zhejiang University, 2018: 6-8(in Chinese).

    [37] [37] CHI N. LED visible light communication technologies[M]. Beijing: Tsinghua University Press, 2013: 70-75 (in Chinese).

    [38] [38] DONIEC M, VASILESCU I, CHITRE M, et al. AquaOptical: A lightweight device for high-rate long-range underwater point-to-point communication[C]//Proceedings of OCEANS 2009.New York, USA: IEEE, 2009: 1-6.

    [39] [39] ARVANITAKIS G N, BIAN R, MCKENDRY J J D, et al. Gb/s underwater wireless optical communications using series-connected GaN micro-LED arrays[J]. IEEE Photonics Journal, 2020, 12(2): 1-10.

    [40] [40] HEATHER B. Designing a wireless underwater optical communication system[D]. Boston, USA: Massachusetts Insttute of Technology, 2010: 1-8.

    [41] [41] CHEN X, LYU W Ch, ZHANG Z J, et al. 56m/3.31Gbps underwater wireless optical communication employing Nyquist single carrier frequency domain equalization with noise prediction[J]. Optics Express, 2020, 28(16): 23784-23795.

    [42] [42] XU J, KONG M W, LIN A B, et al. OFDM-based broadband underwater wireless optical communication system using a compact blue LED[J]. Optics Communications, 2016, 369(6): 100-105.

    [43] [43] TIAN P F, LIU X Y, YI S Y, et al. High-speed underwater optical wireless communication using a blue GaN-based micro-LED[J]. Optics Express, 2017, 25(2): 1193-1201.

    [44] [44] ZHUANG B Y, LI C, WU N, et al. First demonstration of 400Mb/s PAM4 signal transmission over 10 meter underwater channel using a blue LED and a digital linear pre-equalizer[C]//2017 Conference on Lasers and Electro-Optics (CLEO). New York,USA: IEEE, 2017: 17311399.

    [45] [45] WANG F M, LIU Y F, JIANG F Y, et al. High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception[J]. Optics Communications, 2018, 425:106-112.

    [46] [46] CHI N, ZHAO Y H, SHI M, et al, Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system[J]. Optics Express, 2018, 26(20): 26700-26712.

    [47] [47] LU I C, LIU Y C. 205Mb/s LED-based underwater optical communication employing OFDM modulation[C]//2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO). New York, USA: IEEE, 2018: 18323039.

    [48] [48] HAN B, ZHAO W, ZHENG Y, et al. Experimental demonstration of quasi-omni-directional transmitter for underwater wireless optical communication based on blue LED array and freeform lens[J]. Optics Communication, 2019, 434:184-190.

    [49] [49] WANG F M, LIU Y F, SHI M, et al. 3.075Gb/s underwater visible light communication utilizing hardware pre-equalizer with multiple feature points[J]. Optical Engineering, 2019, 58(5): 1-9.

    [50] [50] ZHAO Y H, ZOU P, CHI N. 3.2Gbps underwater visible light communication system utilizing dual-branch multi-layer perceptron based post-equalizer[J]. Optics Communications, 2020, 460: 125197-125208.

    [51] [51] XU J, SONG Y H, YU X Y, et al. Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser[J]. Optics Express, 2016, 24(8): 8097-8109.

    [52] [52] LI Ch Y, LU H H, TSAI W Sh, et al. A 5m/25Gbit/s underwater wireless optical communication system[J]. IEEE Photon Journal, 2018, 10(3): 1-9.

    [53] [53] FEI C, HONG X J, ZHANG G W, et al. 16.6Gbit/s data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization[J]. Optics Express, 2018, 26(26): 34060-34069.

    [54] [54] FEI C, ZHANG J W, ZHANG G W, et al. Demonstration of 15m 7.33Gb/s 450nm underwater wireless optical discrete multitone transmission using post nonlinear equalization [J]. Journal of Lightwave Technology, 2018, 36(3): 728-734.

    [55] [55] HONG X J, FEI C, ZHANG G W, et al. Discrete multitone transmission for underwater optical wireless communication system using probabilistic constellation shapin 5.5g to approach channel capacity limit[J]. Optics Letters, 2019, 44(3): 558-561.

    [56] [56] LU Ch H, WANG J M, LI Sh B, et al. 60m/2.5Gbps underwater optical wireless communication with NRZ-OOK modulation and digital nonlinear equalization[C]//2019 Conference on Lasers and Electro-Optics (CLEO). New York, USA: IEEE, 2019: 1-2.

    [57] [57] CHEN H L, CHEN X W, LU J, et al. Toward long-distance underwater wireless optical communication based on a high sensitivity single photon avalanche diode[J]. IEEE Photonics Journal, 2020, 12(3):1-10.

    [58] [58] HO Ch M, LU Ch K, LU H H, et al. A 10m/10Gbps Underwater Wireless Laser Transmission System[C]// 2017 Optical Fiber Communications Conference & Exhibition. New York, USA: IEEE, 2017: 1-3.

    [59] [59] LU H H, LI CH Y, LIN H H, et al. An 8m/9.6Gbit/s underwater wireless optical communication system[J]. IEEE Photonics Journal, 2016, 8(5): 1-7.

    [60] [60] HONG W X, YU Zh, WEI W, et al. Evolution of the short-range visible light communications & IEEE802.15.7[J]. Optical Communication Technology, 2013, 37(7): 4-7(in Chinese).

    [61] [61] CHI Y Ch, HSIEH D H, TSAI Ch T, et al. 450nm GaN laser diode enables high-speed visible light communication with 9-Gbp QAM-OFDM[J]. Optics Express, 2015, 23(10): 13051-13059.

    [62] [62] OUBEI H M, DURN J R, JANJUA B, et al. Wireless optical transmission of 450nm, 3.2Gbit/s 16-QAM-OFDM signals over 6.6m underwater channel[C]//2016 Conference on Lasers and Electro-Optics (CLEO). New York, USA: IEEE, 2016: 1-2.

    [63] [63] WU T Ch, CHI Y Ch, WANG H Y, et al. Blue laser diode enables underwater communication at 12.4Gbit/s[J]. Scientific Reports, 2017, 7(1): 40480.

    [64] [64] HUANG Y F, TSAI C T, CHI Y Ch, et al. Filtered multicarrier OFDM encoding on blue laser diode for 14.8Gbps seawater transmission[J]. Journal of Lightwave Technology, 2018, 36(9): 1739-1745.

    [65] [65] ZHANG L, WANG H, SHAO X. Improved m-QAM-OFDM transmission for underwater wireless optical communications[J]. Optics Communications, 2018, 423: 180-185.

    [66] [66] WANG J L, YANG X Q, L W Ch, et al. Underwater wireless optical communication based on multi-pixel photon counter and OFDM modulation[J]. Optics Communications, 2019, 451: 181-185.

    [67] [67] GUO Y R, WANG X Q, FU M Sh. QAM-OFDM transmission in underwater wireless optical communication system with limited resolution DAC[J]. Optical and Quantum Electronics, 2020, 52(9): 419-426.

    [68] [68] COX W C, SIMPSON J A, DOMIZIOLI C P, et al. An underwater optical communication system implementing Reed-Solomon channel coding[C]//Oceans 2008. New York, USA: IEEE, 2008: 5151992.

    [69] [69] WANG W P, ZHENG B. The simulation design of led-based close-range underwater optical communication system[C]//2013 10th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). New York, USA: IEEE, 2013: 283-285 .

    [70] [70] DONIEC M, ANGERMANN M, RUS D. An end-to-end signal strength model for underwater optical communications[J]. IEEE Journal of Oceanic Engineering, 2013, 38(4): 743-757.

    [71] [71] CHEN S, SONG J L, YUAN Z M, et al. Diver communication system based on underwater optical communication[J]. Applied Mechanics and Materials, 2014, 621: 259-263.

    [72] [72] PEPPAS K P, BOUCOUVALAS A C, GHASSEMLOY Z, et al. Semiconductor optical amplifiers for underwater optical wireless communications[J]. IET Optoelectronics, 2017, 11(1): 15-19.

    [73] [73] EVERETT J. Forward-error correction coding for underwater free-space optical communication[D]. North Carolina, USA: North Carolina State University, 2009: 1-5.

    [74] [74] LIU H, YANG Y, YIN Y F, et al. Alignment control algorithm of underwater LD communication based on EKF[J]. Acta Photonica Sinica, 2020, 49(4): 137-145(in Chinese).

    [75] [75] HE F T, LI S J, YANG Y, et al. Receiver alignment system based on underwater spot tracking[J]. Acta Photonica Sinica, 2020, 49(10): 1001002(in Chinese).

    [76] [76] LIU L L. Research on channel estimation technologies in optical OFDM transmissions[D]. Shanghai: Shanghai Jiao Tong University, 2013: 13-18(in Chinese).

    [77] [77] HU S Q, MI L, ZHOU T H, et al. Viterbi equalization for long-distance, high-speed underwater laser communication[J]. Optical Engineering, 2017, 56(7): 076101.

    [78] [78] HU S Q, ZHOU T H, CHEN W B. Performance analysis and simulation of maximum ratio combining in underwater laser communication[J]. Chinese Journal of Lasers, 2016, 43(12): 1206003 (in Chinese).

    [79] [79] HU X H, HU S Q, ZHOU T H, et al. Rapid estimation of the maximum communication distance for an underwater laser communication system[J]. Chinese Journal of Lasers, 2015, 42(8): 0805007.

    [80] [80] LI Y Ch, SAFARI M, HENDERSON R, et al. Optical OFDM with single-photon avalanche diode[J]. IEEE Photonics Technology Le-tters, 2015, 27(9): 943-946.

    [81] [81] GABRIEL C, KHALIGHI M A, BOURENNANE S, et al. Monte-Carlo-based channel characterization for underwater optical communication Systems[J]. Journal of Optical Communications & Network-ing, 2013, 5(1): 1-12.

    CLP Journals

    [1] HE Fengtao, WANG Leying, WANG Xiaobo, YANG Yi, LI Bili. Signal detection algorithm of wireless optical communication based on the improved AdaBoost[J]. Laser Technology, 2023, 47(5): 659

    Tools

    Get Citation

    Copy Citation Text

    WANG Bo, WU Qiong, LIU Liqi, WANG Tao, ZHU Renjiang, ZHANG Peng, WANG Lijie. Research progress on the underwater wireless optical communication system[J]. Laser Technology, 2022, 46(1): 99

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 22, 2021

    Accepted: --

    Published Online: Feb. 28, 2022

    The Author Email:

    DOI:10.7510/jgjs.issn.1001-3806.2022.01.010

    Topics