Opto-Electronic Engineering, Volume. 50, Issue 9, 230115-1(2023)

Manipulations and applications of radiating waves using electromagnetic metasurfaces

Qian Zhu1, Hanwei Tian1, and Weixiang Jiang1,2、*
Author Affiliations
  • 1State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
  • 2Purple Mountain Laboratories, Nanjing, Jiangsu 211111, China
  • show less
    References(83)

    [1] Pendry J B, Holden A J, Stewart W J et al. Extremely low frequency plasmons in metallic mesostructures[J]. Phys Rev Lett, 76, 4773-4776(1996).

    [2] Pendry J B, Holden A J, Robbins D J et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Trans Microw Theory Techn, 47, 2075-2084(1999).

    [3] Smith D R, Padilla W J, Vier D C et al. Composite medium with simultaneously negative permeability and permittivity[J]. Phys Rev Lett, 84, 4184-4187(2000).

    [4] Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electron Eng, 44, 255-275(2017).

    [5] Xu P, Xiao Y F, Huang H X et al. Dual-wavelength hologram of high transmittance metasurface[J]. Opt Express, 31, 8110-8119(2023).

    [6] Wang X S, Wu J L, Wang R X et al. Reconstructing polarization multiplexing terahertz holographic images with transmissive metasurface[J]. Appl Sci, 13, 2528(2023).

    [7] Heidari M, Sedighy S H, Amirhosseini M K. RCS reduction using grounded multi-height multi-dielectrics metasurfaces[J]. Sci Rep, 13, 3069(2023).

    [8] Ha T D, Zhu L, Alsaab N et al. Optically transparent metasurface radome for rcs reduction and gain enhancement of multifunctional antennas[J]. IEEE Trans Antennas Propag, 71, 67-77(2023).

    [9] Faraz Z, Kamal B, Ullah S et al. High efficient and ultra-wideband polarization converter based on I-shaped metasurface for RCS reduction[J]. Opt Commun, 530, 129101(2023).

    [10] Dutta R, Mitra D, Ghosh J. Dual-band multifunctional metasurface for absorption and polarization conversion[J]. Int J RF Microw Comput Aided Eng, 30, e22200(2020).

    [11] Loncar J, Grbic A, Hrabar S. A reflective polarization converting metasurface at X-band frequencies[J]. IEEE Trans Antennas Propag, 66, 3213-3218(2018).

    [12] Lin B Q, Huang W Z, Guo J X et al. A high efficiency ultra-wideband circular-to-linear polarization conversion metasurface[J]. Opt Commun, 529, 129102(2023).

    [13] Wang J J, Zhu Q H, Dong J F. Research progress of electromagnetic properties of tunable chiral metasurfaces[J]. Opto-Electron Eng, 48, 200218(2021).

    [14] Liu J Y, Duan Y P, Zhang T et al. Dual-polarized and real-time reconfigurable metasurface absorber with infrared-coded remote-control system[J]. Nano Res, 15, 7498-7505(2022).

    [15] Ghosh S, Srivastava K V. A polarization-independent broadband multilayer switchable absorber using active frequency selective surface[J]. IEEE Antennas Wirel Propag Lett, 16, 3147-3150(2017).

    [16] Krasikov S, Tranter A, Bogdanov A et al. Intelligent metaphotonics empowered by machine learning[J]. Opto-Electron Adv, 5, 210147(2022).

    [17] Yang Y, Zhang X H, Liu K F et al. Complex-amplitude metasurface design assisted by deep learning[J]. Annal Phys, 534, 2200188(2022).

    [18] Yang Y, Zhang X H, Liu K F et al. Exploring the limits of metasurface polarization multiplexing capability based on deep learning[J]. Opt Express, 31, 17065-17075(2023).

    [19] Luo Z J, Ren X Y, Zhou L et al. A high-performance nonlinear metasurface for spatial-wave absorption[J]. Adv Funct Mater, 32, 2109544(2022).

    [20] Liang J C, Zhang L, Cheng Z W et al. Flexible beam manipulations by reconfigurable intelligent surface with independent control of amplitude and phase[J]. Front Mater, 9, 946163(2022).

    [21] Zhang X G, Yu Q, Jiang W X et al. Polarization-controlled dual-programmable metasurfaces[J]. Adv Sci, 7, 1903382(2020).

    [22] Zhang X G, Jiang W X, Cui T J. Frequency-dependent transmission-type digital coding metasurface controlled by light intensity[J]. Appl Phys Lett, 113, 091601(2018).

    [23] Zhang X G, Tang W X, Jiang W X et al. Light-controllable digital coding metasurfaces[J]. Adv Sci, 5, 1801028(2018).

    [24] Zhang X G, Jiang W X, Jiang H L et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nat Electron, 3, 165-171(2020).

    [25] Zhang X G, Sun Y L, Yu Q et al. Smart doppler cloak operating in broad band and full polarizations[J]. Adv Mater, 33, 2007966(2021).

    [26] Zhang X G, Sun Y L, Zhu B C et al. A metasurface-based light-to-microwave transmitter for hybrid wireless communications[J]. Light Sci Appl, 11, 126(2022).

    [27] Chen L, Ma Q, Luo S S et al. Touch-programmable metasurface for various electromagnetic manipulations and encryptions[J]. Small, 18, 2203871(2022).

    [28] Ke J C, Dai J Y, Zhang J W et al. Frequency-modulated continuous waves controlled by space-time-coding metasurface with nonlinearly periodic phases[J]. Light Sci Appl, 11, 273(2022).

    [29] Wang S R, Chen M Z, Ke J C et al. Asynchronous space-time-coding digital metasurface[J]. Adv Sci, 9, 2200106(2022).

    [30] Chen B W, Wang X R, Li W L et al. Electrically addressable integrated intelligent terahertz metasurface[J]. Sci Adv, 8, eadd1296(2022).

    [31] Zhu R C, Wang J F, Fu X M et al. Deep-learning-empowered holographic metasurface with simultaneously customized phase and amplitude[J]. ACS Appl Mater Interfaces, 14, 48303-48310(2022).

    [33] Javor R D, Wu X D, Chang K. Design and performance of a microstrip reflectarray antenna[J]. IEEE Trans Antennas Propag, 43, 932-939(1995).

    [34] Abd-Elhady M, Hong W, Zhang Y. A Ka-band reflectarray implemented with a single-layer perforated dielectric substrate[J]. IEEE Antennas Wirel Propag Lett, 11, 600-603(2012).

    [35] Pilz D, Menzel W. Folded reflectarray antenna[J]. Electron Lett, 34, 832-833(1998).

    [36] Jiang M, Hong W, Zhang Y et al. A folded reflectarray antenna with a planar SIW slot array antenna as the primary source[J]. IEEE Trans Antennas Propag, 62, 3575-3583(2014).

    [37] Yang J W, Shen Y Z, Wang L N et al. 2-D scannable 40-GHz folded reflectarray fed by SIW slot antenna in single-layered PCB[J]. IEEE Trans Microw Theory Techn, 66, 3129-3135(2018).

    [38] Wang S J, Xu H X, Wang M Z et al. A low-RCS and high-gain planar circularly polarized cassegrain meta-antenna[J]. IEEE Trans Antennas Propag, 70, 5278-5287(2022).

    [39] Xu J, Xu H X, Luo H L et al. A low-RCS folded reflectarray combining dual-metasurface and rasorber[J]. IEEE Antennas Wirel Propag Lett, 21, 2462-2466(2022).

    [40] Shen Y Z, Yang J W, Meng H F et al. Generating millimeter-wave Bessel beam with orbital angular momentum using reflective-type metasurface inherently integrated with source[J]. Appl Phys Lett, 112, 141901(2018).

    [41] Miao Z W, Hao Z C, Jin B B et al. Low-profile 2-D THz airy beam generator using the phase-only reflective metasurface[J]. IEEE Trans Antennas Propag, 68, 1503-1513(2020).

    [42] Yang J, Chen S T, Chen M et al. Folded transmitarray antenna with circular polarization based on metasurface[J]. IEEE Trans Antennas Propag, 69, 806-814(2021).

    [43] Li G W, Ge Y H, Chen Z Z. A compact multibeam folded transmitarray antenna at Ku-band[J]. IEEE Antennas Wirel Propag Lett, 20, 808-812(2021).

    [44] Li T J, Wang G M, Cai T et al. Broadband folded transmitarray antenna with ultralow-profile based on metasurfaces[J]. IEEE Trans Antennas Propag, 69, 7017-7022(2021).

    [45] Chen J H, Li G W, Ge Y H et al. A broadband circularly polarized multi-beam folded transmitarray antenna[J]. Int J RF Microw Comput Aided Eng, 32, e23161(2022).

    [46] Fan C, Che W Q, Yang W C et al. A novel PRAMC-based ultralow-profile transmitarray antenna by using ray tracing principle[J]. IEEE Trans Antennas Propag, 65, 1779-1787(2017).

    [47] Li T J, Wang G M, Li H P et al. Circularly polarized double-folded transmitarray antenna based on receiver-transmitter metasurface[J]. IEEE Trans Antennas Propag, 70, 11161-11166(2022).

    [48] Wang Z L, Ge Y H, Pu J X et al. 1 bit electronically reconfigurable folded reflectarray antenna based on p-i-n diodes for wide-angle beam-scanning applications[J]. IEEE Trans Antennas Propag, 68, 6806-6810(2020).

    [49] Liu B Y, Wong S W, Tam K W et al. Multifunctional orbital angular momentum generator with high-gain low-profile broadband and programmable characteristics[J]. IEEE Trans Antennas Propag, 70, 1068-1076(2022).

    [50] Li T, Wang R, Sun J W et al. Characteristic modes-inspired polarization twisting metasurface element for 1-bit folded reflectarray[J]. IEEE Antennas Wirel Propag Lett, 21, 2254-2258(2022).

    [51] Dai J Y, Tang W K, Yang L X et al. Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface[J]. IEEE Trans Antennas Propag, 68, 1618-1627(2020).

    [52] Umair H, Latef T B A, Yamada Y et al. Tilted beam fabry–perot antenna with enhanced gain and broadband low backscattering[J]. Electronics, 10, 267(2021).

    [53] Li H, Li Y B, Shen J L et al. Low-profile electromagnetic holography by using coding fabry-perot type metasurface with in-plane feeding[J]. Adv Opt Mater, 8, 1902057(2020).

    [54] Yang P, Yang R, Li Y C. Dual circularly polarized split beam generation by a metasurface sandwich-based fabry–pérot resonator antenna in Ku-band[J]. IEEE Antennas Wirel Propag Lett, 20, 933-937(2021).

    [56] Bai L, Zhang X G, Wang Q et al. Dual-band reconfigurable metasurface-assisted Fabry-Pérot antenna with high-gain radiation and low scattering[J]. IET Microw Antennas Propag, 14, 1933-1942(2020).

    [57] Huang C, Pan W B, Ma X L et al. A frequency reconfigurable directive antenna with wideband Low-RCS property[J]. IEEE Trans Antennas Propag, 64, 1173-1178(2016).

    [58] Zhang J H, Liu Y, Jia Y T et al. High-gain fabry–Pérot antenna with reconfigurable scattering patterns based on varactor diodes[J]. IEEE Trans Antennas Propag, 70, 922-930(2022).

    [60] Pandi S, Balanis C A, Birtcher C R. Analysis of wideband multilayered sinusoidally modulated metasurface[J]. IEEE Antennas WirelPropag Lett, 15, 1491-1494(2016).

    [61] Wang Q, Zhang X Q, Plum E et al. Polarization and frequency multiplexed terahertz meta-holography[J]. Adv Opt Mater, 5, 1700277(2017).

    [62] Guan C S, Liu J, Ding X M et al. Dual-polarized multiplexed meta-holograms utilizing coding metasurface[J]. Nanophotonics, 9, 3605-3613(2020).

    [63] Lin Z M, Huang L L, Xu Z T et al. Four-wave mixing holographic multiplexing based on nonlinear metasurfaces[J]. Adv Opt Mater, 7, 1900782(2019).

    [64] Wu L W, Xiao Q, Gou Y et al. Electromagnetic diffusion and encryption holography integration based on reflection–transmission reconfigurable digital coding metasurface[J]. Adv Opt Mater, 10, 2102657(2022).

    [65] Xiao Q, Ma Q, Yan T et al. Orbital-angular-momentum-encrypted holography based on coding information metasurface[J]. Adv Opt Mater, 9, 2002155(2021).

    [66] Li Y B, Cai B G, Cheng Q et al. Isotropic holographic metasurfaces for dual-functional radiations without mutual interferences[J]. Adv Funct Mater, 26, 29-35(2016).

    [67] Shen Y Z, Xue S, Dong G Q et al. Multiplexing tensor holographic metasurface with surface impedance superposition for manipulating multibeams with multimodes[J]. Adv Opt Mater, 9, 2101340(2021).

    [68] Wu G B, Dai J Y, Cheng Q et al. Sideband-free space–time-coding metasurface antennas[J]. Nat Electron, 5, 808-819(2022).

    [71] Li T, Chen Z N. Wideband sidelobe-level reduced Ka -band metasurface antenna array fed by substrate-integrated gap waveguide using characteristic mode analysis[J]. IEEE Trans Antennas Propag, 68, 1356-1365(2020).

    [72] Wang J F, Li Y, Jiang Z H et al. Metantenna: when metasurface meets antenna again[J]. IEEE Trans Antennas Propag, 68, 1332-1347(2020).

    [73] Lv Y H, Wang R, Wang B Z et al. Anisotropic complementary metantenna for low sidelobe radiation and low in-band Co-polarized scattering using characteristic mode analysis[J]. IEEE Trans Antennas Propag, 70, 10177-10186(2022).

    [74] Zhang P, Zhang X M, Li L. An optically transparent metantenna for RF wireless energy harvesting[J]. IEEE Trans Antennas Propag, 70, 2550-2560(2022).

    [75] Xu P, Jiang W X, Cai X et al. An integrated coding-metasurface-based array antenna[J]. IEEE Trans Antennas Propag, 68, 891-899(2020).

    [76] Xu P, Tian H W, Jiang W X et al. Phase and polarization modulations using radiation-type metasurfaces[J]. Adv Opt Mater, 9, 2100159(2021).

    [77] Xu P, Tian H W, Cai X et al. Radiation-type metasurfaces for advanced electromagnetic manipulation[J]. Adv Funct Mater, 31, 2100569(2021).

    [78] Wang Y Z, Pang C, Wang Q M et al. Phase-only compact radiation-type metasurfaces for customized far-field manipulation[J]. IEEE Trans Microw Theory Techn, 71, 4119-4128(2023).

    [79] Mu Y H, Pang C, Wang Y Z et al. Complex-amplitude radiation-type metasurface enabling beamform-controlled energy allocation[J]. Photon Res, 11, 986-998(2023).

    [80] Bai X D, Zhang F L, Sun L et al. Radiation-type programmable metasurface for direct manipulation of electromagnetic emission[J]. Laser Photon Rev, 16, 2200140(2022).

    [81] Tian H W, Xu L, Li X et al. Integrated control of radiations and in-band Co-polarized reflections by a single programmable metasurface[J]. Adv Funct Mater, 33, 2302753(2023).

    [82] Zhao J, Yang X, Dai J Y et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. Nat Sci Rev, 6, 231-238(2019).

    [83] Chen M Z, Tang W K, Dai J Y et al. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface[J]. Nat Sci Rev, 9, nwab134(2022).

    Tools

    Get Citation

    Copy Citation Text

    Qian Zhu, Hanwei Tian, Weixiang Jiang. Manipulations and applications of radiating waves using electromagnetic metasurfaces[J]. Opto-Electronic Engineering, 2023, 50(9): 230115-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: May. 19, 2023

    Accepted: Sep. 6, 2023

    Published Online: Jan. 24, 2024

    The Author Email: Weixiang Jiang (蒋卫祥)

    DOI:10.12086/oee.2023.230115

    Topics