Infrared and Laser Engineering, Volume. 51, Issue 11, 20220402(2022)
Phase retrieval algorithms: principles, developments and applications (invited)
[1] Lax M, Louisell W H, Mcknight W B. From Maxwell to paraxial wave optics[J]. Phys Rev A, 11, 1365-1370(1975).
[2] [2] Cowley J M. Diffraction Physics[M]. Amsterdam: Elsevier, 1995.
[3] [3] Stratton J A. Electromagic They [M]. New Jersey: John Wiley & Sons, 2007.
[4] [4] Hecht E. Optics [M]. 4th ed. San Francisco: Addison Wesley, 2001.
[5] [5] Oppenhein A V, Lim J S. The imptance of phase in signals [C]Proceedings of IEEE, 1981, 69(5): 529541.
[6] Giloh H, Sedat J W. Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by
[7] Stephens D J, Allan V J. Light microscopy techniques for live cell imaging[J]. Science, 300, 82-86(2003).
[8] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects part II[J]. Physica, 9, 974-986(1942).
[9] Nomarski G. Differential microinterferometer with polarized waves[J]. J Phys Radium, 16, 9-13(1955).
[10] Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine[J]. Nat Photonics, 12, 578-589(2018).
[11] Jo Y, Cho H, Lee S Y, et al. Quantitative phase imaging and artificial intelligence: A review[J]. IEEE J Sel Top Quantum Electron, 25, 1-14(2018).
[12] Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging[J]. Opt Lett, 24, 291-293(1999).
[13] Schnars U, Jptner W P O. Digital recording and numerical reconstruction of holograms[J]. Meas Sci Technol, 13, R85(2002).
[14] Tahara T, Quan X, Otani R, et al. Digital holography and its multidimensional imaging applications: A review[J]. Microscopy, 67, 55-67(2018).
[15] Hartmann J. Bemerkungen uber den bau und die justirung von spektrographen[J]. Zt Instrumentenkd, 20, 17-27(1990).
[16] Shack R V, Platt B C. Production and use of a lecticular hartmann screen[J]. J Opt Soc Am, 61, 656-661(1971).
[17] Platt B C, Shack R V. History and principles of shack-hartmann wavefront sensing[J]. J Cataract Refr Surg, 17, S573-577(2001).
[18] Esposito S, Riccardi A. Pyramid wavefront sensor behavior in partial correction adaptive optic systems[J]. Astron Astrophys, 369, L9-L12(2001).
[19] Ragazzoni R, Diolaiti E, Vernet E. A pyramid wavefront sensor with no dynamic modulation[J]. Opt Commun, 208, 51-60(2002).
[20] Neil M A A, Booth M J, Wilson T. New modal wave-front sensor: A theoretical analysis[J]. J Opt Soc Am A, 17, 1098-1107(2000).
[21] Booth M J. Wave front sensor-less adaptive optics: A model-based approach using sphere packings[J]. Opt Express, 14, 1339-1352(2006).
[22] Booth M J. Adaptive optics in microscopy[J]. Phil Trans R Soc A, 365, 2829-2843(2007).
[23] Cha J W, Ballesta J, So P T C. Shack-hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy[J]. J Biomed Opt, 15, 046022(2010).
[24] Dayton D, Gonglewski J, Pierson B, et al. Atmospheric structure function measurements with a Shack-Hartmann wave-front sensor[J]. Opt Lett, 17, 1737-1739(1992).
[25] Ricklin J C, Davidson F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: Implications for free-space laser communication[J]. J Opt Soc Am A, 19, 1794-1802(2002).
[26] Liang J, Grimm B, Goelz S, et al. Objective measurement of wave aberrations of the human eye with the use of a hartmann-shack wave-front sensor[J]. J Opt Soc Am A, 11, 1949-1957(1994).
[27] Moreno-Barriuso E, Navarro R. Laser ray tracing versus hartmann-shack sensor for measuring optical aberrations in the human eye[J]. J Opt Soc Am A, 17, 974-985(2000).
[28] Sayre D. Some implications of a theorem due to Shannon[J]. Acta Crystallogr, 5, 843-843(1952).
[29] Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).
[30] Gerchberg R W. Phase determination for image and diffraction plane pictures in the electron microscope[J]. Optik, 34, 275-284(1971).
[31] Miao J, Charalambous P, Kirz J, et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens[J]. Nature, 400, 342-344(1999).
[32] Miao J, Sayre D, Chapman H N, et al. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects[J]. J Opt Soc Am A, 15, 1662(1998).
[33] Howells M R, Beetz T, Chapman H N, et al. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy[J]. J Electron Spectrosc Relat Phenom, 170, 4-12(2009).
[34] Candès E J, Thomas S, Vladislav V. PhaseLift: Exact and stable signal recovery from magnitude measurements via convex programming[J]. Commun Pure Appl Math, 66, 1241-1274(2013).
[35] Waldspurger I, D’aspremont A, Mallat S. Phase recovery, max-cut and complex semidefinite programming[J]. Math Program, 149, 47-81(2015).
[36] Candès E J, Li X, Soltanolkotabi M. Phase retrieval via wirtinger flow: Theory and algorithms[J]. IEEE Trans Inf Theory, 61, 1985-2007(2015).
[37] Chen Y, Candès E J. Solving random quadratic systems of equations is nearly as easy as solving linear systems[J]. Commun Pure Appl Math, 70, 822-883(2017).
[38] Wang G, Giannakis G B, Eldar Y C. Solving systems of random quadratic equations via truncated amplitude flow[J]. IEEE Trans Inf Theory, 64, 773-794(2018).
[39] [39] Eldar Y C, Kutyniok G. Compressed Sensing: They Applications [M]. Cambridge: Cambridge University Press, 2012.
[40] Sanz J L C. Mathematical considerations for the problem of Fourier transform phase retrieval from magnitude[J]. SIAM J Appl Math, 45, 651-664(1985).
[41] Fannjiang A. Absolute uniqueness of phase retrieval with random illumination[J]. Inverse Probl, 28, 075008(2012).
[42] Hofstetter E. Construction of time-limited functions with specified auto-correlation functions[J]. IEEE Trans Inf Theory, 10, 119-126(1964).
[43] Bruck Y M, Sodin L. On the ambiguity of the image reconstruction problem[J]. Opt Commun, 30, 304-308(1979).
[44] Hayes M. The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform[J]. IEEE Trans Acoust, Speech, Signal Process, 30, 140-154(1982).
[45] Bates R H T. Fourier phase problems are uniquely solvable in more than one dimension. I: Underlying theory[J]. Optik, 61, 247-262(1982).
[46] Van H, Hayes M, Lim J, et al. Signal reconstruction from signed fourier transform magnitude[J]. IEEE Trans Acoust, Speech, Signal Process, 31, 1286-1293(1983).
[47] Beinert R. Non-negativity constraints in the one-dimensional discrete-time phase retrieval problem[J]. Information and Inference: A Journal of the IMA, 6, 213-224(2017).
[48] Beinert R, Plonka G. Ambiguities in one-dimensional discrete phase retrieval from Fourier magnitudes[J]. J Fourier Anal Appl, 21, 1169-1198(2015).
[49] [49] Elad M. Sparse Redundant Representations: From They To Applications In Signal Image Processing [M]. New Yk: SpringerVerlag, 2010.
[50] [50] Ranieri J, Chebira A, Lu Y M, et al. Phase retrieval f sparse signals: Uniqueness conditions [EBOL]. (20130814) [20221011]. https:arxiv.gabs1308.3058.
[51] [51] Ohlsson H, Eldar Y C. On conditions f uniqueness in sparse phase retrieval [C]2014 IEEE International Conference on Acoustics, Speech Signal Processing (ICASSP), 2014: 18411845.
[52] Jaganathan K, Oymak S, Hassibi B. Sparse phase retrieval: Uniqueness guarantees and recovery algorithms[J]. IEEE Trans Signal Process, 65, 2402-2410(2017).
[53] Candès E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans Inf Theory, 52, 489-509(2006).
[54] Fienup J R. Phase retrieval algorithms: A comparison[J]. Appl Optics, 21, 2758-2769(1982).
[55] Teague M R. Irradiance moments: Their propagation and use for unique retrieval of phase[J]. J Opt Soc Am, 72, 1199-1209(1982).
[56] Shen C, Liang M, Pan A, et al. Non-iterative complex wave-field reconstruction based on Kramers–Kronig relations[J]. Photonics Res, 9, 1003-1012(2021).
[57] [57] Mukherjee S, Seelamantula C S. An iterative algithm f phase retrieval with sparsity constraints: Application to frequency domain optical coherence tomography [C]2012 IEEE International Conference on Acoustics, Speech Signal Processing Processing (ICASSP), 2012: 553556.
[58] Shechtman Y, Beck A, Eldar Y C. GESPAR: Efficient phase retrieval of sparse signals[J]. IEEE Trans Signal Process, 62, 928-938(2014).
[59] Rivenson Y, Zhang Y, Günaydın H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Sci Appl, 7, 17141(2017).
[60] Sinha A, Lee J, Li S, et al. Lensless computational imaging through deep learning[J]. Optica, 4, 1117(2017).
[61] Nguyen T, Xue Y, Li Y, et al. Deep learning approach for Fourier ptychography microscopy[J]. Opt Express, 26, 26470-26484(2018).
[62] [62] Metzler C, Schniter P, Veeraraghavan A, et al. prDeep: Robust phase retrieval with a flexible deep wk [C]Proceedings of the 35th International Conference on Machine Learning, 2018, 80: 35013510.
[63] Balan R, Casazza P, Edidin D. On signal reconstruction without phase[J]. Appl Comput Harmon Anal, 20, 345-356(2006).
[64] Conca A, Edidin D, Hering M, et al. An algebraic characterization of injectivity in phase retrieval[J]. Appl Comput Harmon Anal, 38, 346-356(2015).
[65] Eldar Y C, Mendelson S. Phase retrieval: Stability and recovery guarantees[J]. Appl Comput Harmon Anal, 36, 473-494(2014).
[66] Shechtman Y, Eldar Y C, Cohen O, et al. Phase retrieval with application to optical imaging: A contemporary overview[J]. IEEE Signal Proc Mag, 32, 87-109(2015).
[67] Wackerman C C, Yagle A E. Use of fourier domain real-plane zeros to overcome a phase retrieval stagnation[J]. J Opt Soc Am A, 8, 1898-1904(1991).
[68] Lu G, Zhang Z, Yu F T S, et al. Pendulum iterative algorithm for phase retrieval from modulus data[J]. Opt Eng, 33, 548-555(1994).
[69] Takajo H, Takahashi T, Kawanami H, et al. Numerical investigation of the iterative phase-retrieval stagnation problem: Territories of convergence objects and holes in their boundaries[J]. J Opt Soc Am A, 14, 3175-3187(1997).
[70] [70] Soifer V A, Kotlar V, Doskolovich L. Iteractive Methods F Diffractive Optical Elements Computation [M]. London: Tayl & Francis Group, 1997.
[71] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Opt Letters, 3, 27-29(1978).
[72] Fienup J R, Crimmins T, Holsztynski W. Reconstruction of the support of an object from the support of its autocorrelation[J]. J Opt Soc Am A, 72, 610-624(1982).
[73] [73] Fienup J R. Phase retrieval with continuous version of hybrid inputoutput [C]Frontiers in Optics, OSA Technical Digest (CD), 2003: ThI3.
[74] Elser V. Phase retrieval by iterated projections[J]. J Opt Soc Am A, 20, 40-55(2003).
[75] Luke D R. Relaxed averaged alternating reflections for diffraction imaging[J]. Inverse Probl, 21, 37(2004).
[76] Fienup J R, Wackerman C C. Phase-retrieval stagnation problems and solutions[J]. J Opt Soc Am A, 3, 1897-1907(1986).
[77] Williams G J, Pfeifer M A, Vartanyants I A, et al. Three-dimensional imaging of microstructure in Au nanocrystals[J]. Phys Rev Lett, 90, 175501(2003).
[78] Robinson I K, Vartanysnts I A, Williams G J, et al. Recon-struction of the shapes of gold nanocrystals using coherent X-Ray diffraction[J]. Phys Rev Lett, 87, 195505(2001).
[79] Loh N T D, Eisebitt S, Flewett S, et al. Recovering magne-tization distributions from their noisy diffraction data[J]. Phys Rev E, 82, 061128(2010).
[80] Misell D L. A method for the solution of the phase problem in electron microscopy[J]. J Phys D: Appl Phys, 6, L6(1973).
[81] Bao P, Zhang F, Pedrini G, et al. Phase retrieval using multiple illumination wavelengths[J]. Opt Lett, 33, 309-311(2008).
[82] Allen L J, Oxley M P. Phase retrieval from series of images obtained by defocus variation[J]. Opt Commun, 1999, 65-75(2001).
[83] Zhang Y, Pedrini G, Osten W, et al. Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm[J]. Opt Express, 11, 3234-3241(2003).
[84] Almoro P, Pedrini G, Osten W. Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field[J]. Appl Optics, 45, 8596-8605(2006).
[85] Gao P, Pedrini G, Zuo C, et al. Phase retrieval using spatially modulated illumination[J]. Opt Lett, 39, 3615(2014).
[86] Zhang F, Pedrini G, Osten W. Phase retrieval of arbitrary complex-valued fields through aperture- plane modulation[J]. Phys Rev A, 75, 043805(2007).
[87] Morris D. Simulated annealing applied to the Misell algorithm for phase retrieval[J]. Microwaves, Antennas and Propagation, 143, 298-303(1996).
[88] Xu Y, Ye Q, Meng G. Hybrid phase retrieval algorithm based on modified very fast simulated annealing[J]. Int J Microw Wirel Technol, 10, 1072-1080(2018).
[89] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm[J]. Phys Rev Lett, 93, 023903(2004).
[90] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Appl Phys Lett, 85, 4795-4797(2004).
[91] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 109, 1256-1262(2009).
[92] Maiden A M, Humphry M J, Rodenburg J. Ptychographic transmission microscopy in three dimensions using a multi-slice approach[J]. J Opt Soc Am A, 29, 1606-1614(2012).
[93] Maiden A, Johnson D, Li P. Further improvements to the ptychographical iterative engine[J]. Optica, 4, 736-745(2017).
[94] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nat Photonics, 7, 739-745(2013).
[95] Ou X, Horstmeyer R, Yang C, et al. Quantitative phase imaging via Fourier ptychographic microscopy[J]. Opt Lett, 38, 4845(2013).
[96] Pan A, Zhang Y, Zhao T, et al. System calibration method for Fourier ptychographic microscopy[J]. J Biomed Optics, 22, 096005(2017).
[97] Zhang Y, Pan A, Lei M, et al. Data preprocessing methods for robust Fourier ptychographic microscopy[J]. Opt Eng, 56, 123107(2017).
[98] Pan A, Zuo C, Xie Y, et al. Vignetting effect in Fourier ptychographic microscopy[J]. Opt Laser Eng, 120, 40-48(2019).
[99] [99] Pan A, Shen C, Yao B, et al. Singleshot Fourier ptychographic microscopy via annular monochrome LED array [C]Frontiers in Optics + Laser Science APSDLS, 2019: FTh3 F.4.
[100] Pan A, Zhang Y, Wen K, et al. Subwavelength resolution Fourier ptychography with hemispherical digital condensers[J]. Opt Express, 26, 23119-23131(2018).
[101] Pan A, Yao B. Three-dimensional space optimization for near-field ptychography[J]. Opt Express, 27, 5433-5446(2019).
[102] Chan A, Kim J, Pan A, et al. Parallel Fourier ptychographic microscopy for high-throughput screening with 96 cameras (96 Eyes)[J]. Sci Rep, 9, 11114(2019).
[103] Pan A, Wen K, Yao B. Linear space-variant optical cryptosystem via Fourier ptychography[J]. Opt Lett, 44, 2032-2035(2019).
[104] Xiang M, Pan A, Zhao Y, et al. Coherent synthetic aperture imaging for visible remote sensing via reflective Fourier ptychography[J]. Opt Lett, 46, 29-32(2021).
[105] Gao Y, Chen J, Wang A, et al. High-throughput fast full-color digital pathology based on Fourier ptychographic microscopy via color transfer[J]. Sci China-Phys Mech, 64, 114211(2021).
[106] Wang A, Zhang Z, Wang S, et al. Fourier ptychographic microscopy via alternating direction method of multipliers[J]. Cells, 11, 1512(2022).
[107] Sun Jiasong, Zhang Yuzhen, Chen Qian, et al. Fourier ptychographic microscopy: Theory, advances, and applications[J]. Acta Optica Sinica, 36, 1011005(2016).
[108] Pan An, Yao Baoli. High-throughput and fast-speed Fourier ptychographic microscopy[J]. Infrared and Laser Engi-neering, 48, 0603012(2019).
[109] Konda P C, Loetgering L, Zhou K C, et al. Fourier ptycho-graphy: Current applications and future promises[J]. Opt Express, 28, 9603-9630(2020).
[110] Pan A, Zuo C, Yao B. High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine[J]. Rep Prog Phys, 83, 096101(2020).
[111] Zheng G, Shen C, Jiang S, et al. Concept, implementations and applications of Fourier ptychography[J]. Nat Rev Phys, 3, 207-223(2021).
[112] Zhang Shaohui, Zhou Guocheng, Cui Baiqi, et al. Review of Fourier ptychographic microscopy: Models, algorithms, and systems[J]. Laser & Optoelectronics Progress, 58, 1400001(2021).
[113] Teague M R. Deterministic phase retrieval: A green’s function solution[J]. J Opt Soc Am A, 73, 1434-1441(1983).
[114] Guigay J P. Fourier transform analysis of fresnel diffraction patterns and in-line holograms[J]. Optik, 49, 121-125(1977).
[115] Paganin D, Nugent K A. Noninterferometric phase imaging with partially coherent light[J]. Phys Rev Lett, 80, 2586(1998).
[116] Gureyev T E, Raven C, Snigirev A, et al. Hard X-ray quantitative non-interferometric phase- contrast microscopy[J]. J Phys Appl Phys, 32, 563(1999).
[117] Pinhasi S V, Alimi R, Perelmutter L, et al. Topography retrieval using different solutions of the transport intensity equation[J]. J Opt Soc Am A, 27, 2285-2292(2010).
[118] Xue B, Zheng S. Phase retrieval using the transport of intensity equation solved by the FMG-CG method[J]. Opt-Int J Light Electron Opt, 122, 2101-2106(2011).
[119] Voitsekhovich V V. Phase-retrieval problem and orthogonal expansions: Curvature sensing[J]. J Opt Soc Am A, 12, 2194-2202(1995).
[120] Ros S, Acosta E, Bar S. Modal phase estimation from wavefront curvature sensing[J]. Opt Commun, 123, 453-456(1996).
[121] Volkov V V, Zhu Y, De Graef M. A new symmetrized solution for phase retrieval using the transport of intensity equation[J]. Micron, 33, 411-416(2002).
[122] Frank J, Altmeyer S, Wernicke G. Non-interferometric, non-iterative phase retrieval by green’s functions[J]. J Opt Soc Am A, 27, 2244-2251(2010).
[123] Zuo C, Chen Q, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform[J]. Opt Express, 22, 9220(2014).
[124] Zuo C, Chen Q, Li H, et al. Boundary-artifact-free phase retrieval with the transport of intensity equation II: Applications to microlens characterization[J]. Opt Express, 22, 18310(2014).
[125] Huang L, Zuo C, Idir M, et al. Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms[J]. Opt Lett, 40, 1976(2015).
[126] Zuo C, Li J, Sun J, et al. Transport of intensity equation: A tutorial[J]. Opt Laser Eng, 152, 106187(2020).
[127] [127] Hall S H, Heck H L. Advanced Signal Integrity f Highspeed Digital Designs [M]. Hoboken, NJ, USA: Wiley, 2009.
[128] [128] Graf U. Introduction to Hyperfunctions Their Integral Transfms: An Applied Computational Approach [M]. Basel: Birkhauser, 2010.
[129] Ikeda T, Popescu G, Dasari R R, et al. Hilbert phase microscopy for investigating fast dynamics in transparent systems[J]. Opt Lett, 30, 1165-1167(2005).
[130] Beak Y, Lee K, Shin S, et al. Kramers–Kronig holographic imaging for high-space-bandwidth product[J]. Optica, 6, 45-51(2019).
[131] Huang Z, Cao L. High bandwidth-utilization digital holo-graphic multiplexing: An approach using Kramers-Kronig relations[J]. Adv Photonics Res, 3, 2100273(2022).
[132] Gillis N, Glineur F. Low-rank matrix approximation with weights or missing data is NP-hard[J]. SIAM J Matrix Anal Appl, 32, 1149-1165(2011).
[133] Lu Y M, Li G. Phase transitions of spectral initialization for high-dimensional non-convex estimation[J]. Information and Inference: A Journal of the IMA, 9, 507-541(2017).
[134] Netrapalli P, Jain P, Sanghavi S. Phase retrieval using alternating minimization[J]. IEEE Trans Signal Process, 63, 4814-4826(2015).
[135] Cai T, Fan J, Jiang T. Distributions of angles in random packingon spheres[J]. J Mach Learn Res, 14, 1837-1864(2013).
[136] Wang G, Giannakis G B, Saad Y. Phase retrieval via reweighted amplitude flow[J]. IEEE Trans Signal Process, 66, 2818-2833(2018).
[137] [137] Yuan Z, Wang H, Wang Q. Phase retrieval via sparse Wirtinger flow[J]. J Comput Appl Math, 2019, 355: 162173.
[138] [138] Kolte R, Özgür A. Phase retrieval via incremental d Wirtinger flow [EBOL]. (20160610) [20220803]. https:arxiv.gabs1606.03196.
[139] Zhang H, Chi Y, Liang Y. Median-truncated nonconvex approach for phase retrieval with outliers[J]. IEEE Trans Inf Theory, 64, 7287-7310(2018).
[140] Wang G, Giannakis G B, Saad Y, et al. Scalable solvers of random quadratic equations via stochastic truncated amplitude flow[J]. IEEE Trans Signal Process, 65, 1961-1974(2017).
[141] Pinilla S, Bacca J, Arguello H. Phase retrieval algorithm via nonconvex minimization using a smoothing function[J]. IEEE Trans Signal Process, 66, 4574-4584(2018).
[142] Luo Q, Wang H, Lin S. Phase retrieval via smoothed amplitude flow[J]. Signal Process, 177, 107719(2020).
[143] Loock S, Plonka G. Phase retrieval for Fresnel measurements using a Shearlet sparsity constraint[J]. Inverse Probl, 30, 055005(2014).
[144] Yang Zhenya, Zheng Chujun. Phase retrieval of pure phase object based on compressed sensing[J]. Acta Physica Sinica, 62, 104203(2013).
[145] Shechtman Y, Eldar Y C, Szameit A, et al. Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing[J]. Opt Express, 19, 14807-14822(2011).
[146] Ohlsson H, Yang A Y, Dong R, et al. Compressive phase retrieval from squared output measurements via semidefinite programming[J]. IFCA Proceedings Volumes, 45, 89-94(2012).
[147] Zuo Chao, Feng Shijie, Zhang Xiangyu, et al. Deep learning based computational imaging: Status, challenges, and future[J]. Acta Optica Sinica, 40, 0111003(2020).
[148] Nishizaki Y, Horisaki R, Kitaguchi K, et al. Analysis of non-iterative phase retrieval based on machine learning[J]. Opt Rev, 27, 136-141(2020).
[149] Wang F, Bian Y, Wang H, et al. Phase imaging with an untrained neural network[J]. Light: Sci Appl, 9, 77(2020).
[150] [150] Naimipour N, Khobahi S, Soltanalian M. UPR: A modeldriven architecture f deep phase retrieval [C]54th Asilomar Conference on Signals, Systems, Computers, 2020: 205209.
[151] Boutet S, Robinson I K. Coherent X-ray diffractive imaging of protein crystals[J]. J Synchrotron Radiat, 15, 576-583(2008).
[152] Parker M W. Protein structure from X-ray diffraction[J]. Journal of Biological Physics, 29, 341-362(2003).
[153] Miao J, Ohsuna T, Terasaki O, et al. Atomic resolution three-dimensional electron diffraction microscopy[J]. Phys Rev Lett, 89, 155502(2002).
[154] Kamimuraet O, Kawahara K, Doi T, et al. Diffraction microscopy using 20 kV electron beam for multiwall carbon nanotubes[J]. Appl Phys Lett, 92, 024106(2008).
[155] Maiden A M, Humphry M J, Zhang F, et al. Superresolution imaging via ptychography[J]. J Opt Soc Am A, 28, 604-612(2011).
[156] Maiden A M, Rodenburg J M, Humphry M J. Optical ptychography: A practical implementation with useful resolu-tion[J]. Opt Lett, 35, 2585-2587(2010).
[157] Chapman H N, Nugent K A. Coherent lensless X-ray imaging[J]. Nat Photonics, 4, 833-839(2010).
[158] Wu J, Zhang H, Zhang W, et al. Single-shot lensless imaging with fresnel zone aperture and incoherent illumination[J]. Light: Sci Appl, 9, 53(2020).
[159] Alfalou A, Brosseau C. Optical image compression and encryption methods[J]. Adv Opt Photonics, 1, 589(2009).
[160] Wang R K, Watson I A, Chatwin C R. Random phase encoding for optical security[J]. Opt Eng, 35, 2464-2469(1996).
[161] Situ Guohai, Zhang Jingjuan, Zhang Yan, et al. A cascaded-phases retrieval algorithm for optical image encryption[J]. Journal of Optoelectronics · Laser, 15, 341(2004).
[162] Shi Y, Situ G, Zhang J. Multiple-image hiding in the Fresnel domain[J]. Opt Lett, 32, 1914-1916(2007).
[163] Huang J J, Hwang, H E, Chen C Y, et al. Lensless multiple-image optical encryption based on improved phase retrieval algorithm[J]. Appl Opt, 51, 2388(2012).
[164] Guo C, Liu S, Sheridan J T. Iterative phase retrieval algorithms. Part I: Optimization[J]. Appl Opt, 54, 4698-4708(2015).
[165] Guo C, Liu S, Sheridan J T. Iterative phase retrieval algorithms. Part II: Attacking optical encryption systems[J]. Appl Opt, 54, 4709-4718(2015).
[166] Guo C, Wei C, Tan J, et al. A review of iterative phase retrieval for measurement and encryption[J]. Opt Lasers Eng, 89, 2-12(2017).
[167] Wang S, Meng X, Wang Y, et al. Phase retrieval algorithm for optical information security[J]. Chin Phys B, 28, 084203(2019).
[168] Hu L, Liu C, Shen W, et al. Advancement of adaptive optics in astronomical observation[J]. Sci China-Phys Mech, 47, 084202(2017).
[169] Sandler D G, Stahl S, Angel J R P, et al. Adaptive optics for diffraction-limited infrared imaging with 8-m telescopes[J]. J Opt Soc Am A, 11, 925-945(1994).
[170] Rao C, Zhu L, Rao X, et al. 37-element solar adaptive optics for 26-cm solar fine structure telescope at Yunnan Astronomical Observatory[J]. Chin Opt Lett, 8, 966-968(2010).
[171] Baranova N B, Mamaev A V, Pilipetsky N F, et al. Wave-front dislocations: Topological limitations for adaptive systems with phase conjugation[J]. J Opt Soc Am, 73, 525-528(1983).
[172] Ping Y, Ming A, Yuan L, et al. Intracavity transverse modes controlled by a genetic algorithm based on Zernike mode coefficients[J]. Opt Express, 15, 17051(2007).
[173] Zommer S, Ribak E N, Lipson S G, et al. Simulated annealing in ocular adaptive optics[J]. Opt Letters, 31, 939-941(2006).
[174] El-Agmy R, Bulte H, Greenaway A H, et al. Adaptive beam profile control using a simulated annealing algorithm[J]. Opt Express, 13, 6085(2005).
[175] Zakynthinaki M S, Saridakis Y G. Stochastic optimization for adaptive real-time wavefront correction[J]. Numerical Algorithms, 33, 509-520(2003).
[176] [176] Feng L, Zeng Z, Wu Y. Phase retrieval hybrid algithm f optical surface testing of the high dynamic range err [C]Proceedings of SPIE, 2014, 9282: 92822Y.
[177] Fienup J R, Marron J C, Schulz T J, et al. Hubble space telescope characterized by using phase retrieval algorithms[J]. Appl Optics, 32, 1747-1767(1993).
[178] [178] Dean B H, Aronstein D L, Smith J S, et al. Phase retrieval algithm f JWST flight testbed telescope [C]Proceedings of SPIE, 2006, 6265: 626511.
[179] Li Shengyi, Hu Xiaojun, Wu Yulie. Phase retrieval on site testing for large mirrors[J]. Acta Photonica Sinica, 38, 365(2009).
[180] Wu Yulie, Hu Xiaojun, Dai Yifan, et al. In-situ surface measurement for large aperture optical mirror based on phase retrieval technology[J]. Journal of Mechanical Engineering, 45, 157-163(2009).
Get Citation
Copy Citation Text
Aiye Wang, An Pan, Caiwen Ma, Baoli Yao. Phase retrieval algorithms: principles, developments and applications (invited)[J]. Infrared and Laser Engineering, 2022, 51(11): 20220402
Category:
Received: Jun. 13, 2022
Accepted: --
Published Online: Feb. 9, 2023
The Author Email: