Infrared and Laser Engineering, Volume. 54, Issue 3, 20250103(2025)

Application prospects of phase-sensitive amplification technology in optical communication (inner cover paper·invited)

Tianlun LI1,2、*, Yancheng SU1, Tongze XIA1, Leping YANG1, Shuaiwei JIA3, Zhuang XIE3, and Duorui GAO3、*
Author Affiliations
  • 1School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China
  • 2Yangtze River Delta Research Institute of NPU, Northwestern Polytechnical University, Taicang 215400, China
  • 3State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
  • show less
    Figures & Tables(7)
    The scheme of FOPA. FOPA: fiber-based optical parametric amplification; CW: continuous wave; PC: polarization controller; HNLF: highly nonlinear fiber; OP: optical processor; OPA: optical parametric amplification
    The potential applications and its development directions of PSA in optical communication. FOC: fiber optical communication; FSOC: free-space optical communication; PICs: photonic integrated circuits
    The applications of FWM-PSA in (a) long-link FOC[10] and (b) ultra-long-distance FSOC[9]
    The scheme of PSA-based “blackbox” in optical communication system assisted by (a) TWM-PSA[19] and (b) FWM-PSA[35]
    The length of different optical medium for PSA
    • Table 1. Basic parameters comparison of reported FWM-PSA

      View table
      View in Article

      Table 1. Basic parameters comparison of reported FWM-PSA

      PrinciplePIA (first-stage)PSA (second-stage)Gain/dBNF/dBBandwidth/nmFormats & data rateRef.
      *WG: waveguide
      FWMHNLF@50 mHNLF@500 m>16<2--[31]
      HNLF@500 mHNLF@177 m200-DPSK@40 Gsymbol/s[14]
      HNLF@50 mHNLF@500 m26.51.1>100DQPSK@10 Gsymbol/s[34]
      HNLF@400 mHNLF@500 m20.1<1-QPSK@10 Gsymbol/s[33]
      HNLF@80 km22<2-QPSK@10 Gsymbol/s[10]
      HNLF@350 m221.7-QPSK/BPSK@10 Gsymbol/s[35]
      Si3N4-WG*@1.42 mSi3N4-WG@1.42 m9.51.2--[36]
      Si3N4-WG@1.42 m101.2-IM@10 Gb/s[37]
      Si3N4-WG@2 m12-20-[38]
      Si3N4-WG@2 m221.260-[11]
      Si-WG@9.5 cm--12NRZ-OOK@40 Gsymbol/s[39]
      TWMHNLF@500 mPPLN-WG@50 mm30.1-77-[25]
      HNLF@400 mPPLN-WG@50 mm18.6-61.6-[26]
      PPLN-WG@5 cmPPLN-WG@5 cm11--IM@10 Gb/s[23]
      PPLN-WG12<3-BPSK[40]
      PPLN-WG@5 mm23---[41]
      PPLN-WG@45 mm>30<1>6516-QAM@20 Gbaud (80 Gbps)[42]
      PPLN-WG@5 mm9.6-24-[43]
    • Table 2. Performance comparison for long-distance optical communication system based on PSA

      View table
      View in Article

      Table 2. Performance comparison for long-distance optical communication system based on PSA

      ApplicationsFormatsDistanceData rateSensitivityBERRef.
      PPB: photon-per-information-bit
      Long-link FOCQPSK80 km10 Gsymbol/s-10-3[10]
      QPSK80 km1.4 Gbit/s-2.8×10-5[46]
      NRZ-OAM800 m40 Gb/s-<10-6[47]
      BPSK53.42 km13.3 Gbit/s4.3 PPB*10-3[48]
      Deep-space laser communicationQPSKLab fiber@1 m10.52 Gb/s1 PPB<10-6[9]
      PPM-10 Gbit/s0.35 PPB-[49]
      QPSKLab fiber@350 m10 Gb/s0.9 PPB-[35]
      16-PPM400 000 km10 Gbit/s7 PPB-[50]
      QPSK-10.52 Gb/s1 PPB-[51]
      QPSK--1.9 PPB10-3[52]
      PPM400 000 km-3.57 PPB10-5[53]
      QPSK--0.8 PPB10-3[54]
    Tools

    Get Citation

    Copy Citation Text

    Tianlun LI, Yancheng SU, Tongze XIA, Leping YANG, Shuaiwei JIA, Zhuang XIE, Duorui GAO. Application prospects of phase-sensitive amplification technology in optical communication (inner cover paper·invited)[J]. Infrared and Laser Engineering, 2025, 54(3): 20250103

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 14, 2025

    Accepted: --

    Published Online: Apr. 8, 2025

    The Author Email: Tianlun LI (litianlun@nwpu.edu.cn), Duorui GAO (gaoduorui@opt.ac.cn)

    DOI:10.3788/IRLA20250103

    Topics