INFRARED, Volume. 46, Issue 2, 49(2025)

Marine Infrared Target Detection Algorithm Based on Improved YOLOx-nano

Jun ZHANG*, Men WEI, and Lu LV
Author Affiliations
  • The 58th Research Institute of CETC, Wuxi 430070, China
  • show less
    References(5)

    [6] [6] Son Y J, Choi O. Image-based hand pose classification using faster R-CNN [C]. Jeju: 17th International Conference on Control, Automation and Systems (ICCAS), 2017.

    [7] [7] Prathap B R, Kumar K P, Chowdary C R, et al. AI-Based Yolo V4 Intelligent Traffic Light Control System [J]. Journal of Automation, Mobile Robotics and Intelligent Systems, 2022, 16(4): 5361.

    [8] [8] Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger [C]. Honolulu: 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017.

    [9] [9] Adiono T, Ramadhan R M, Lin M C H. Fast and scalable multicore YOLOv3-tiny accelerator usinginput stationary systolic architecture [J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023, 31(11):17741787.

    [13] [13] Song C Y, Zhang F, Li J S, et al. Detection of maize tassels for UAV remote sensing image with an improved YOLOX model [J]. Journal of Integrative Agriculture, 2023, 22(6): 16711683.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Jun, WEI Men, LV Lu. Marine Infrared Target Detection Algorithm Based on Improved YOLOx-nano[J]. INFRARED, 2025, 46(2): 49

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Sep. 24, 2024

    Accepted: Mar. 13, 2025

    Published Online: Mar. 13, 2025

    The Author Email: ZHANG Jun (ZHANG_JUN@cumt.edu.cn)

    DOI:10.3969/j.issn.1672-8785.2025.02.006

    Topics