Infrared Technology, Volume. 42, Issue 9, 855(2020)

Hyperspectral Image Classification Algorithm Based on Multiscale Convolutional Neural Network

Yongfeng QI1、*, Jing CHEN1, Yuanlian HUO2, and Fayong LI1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(46)

    [1] [1] LI Shutao, SONG Weiwei, FANG Leyuan, et al. Deep Learning for Hyperspectral Image Classification: An Overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6690-6709.

              LI Shutao, SONG Weiwei, FANG Leyuan, et al. Deep Learning for Hyperspectral Image Classification: An Overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6690-6709.

    [2] [2] TAN Kun, MA Weibo, WU Fuyu, et al. Random forest-based estimation of heavy metal concentration in agricultural soils with hyperspectral sensor data[J]. Environmental Monitoring & Assessment, 2019, 191(7): 1-14.

              TAN Kun, MA Weibo, WU Fuyu, et al. Random forest-based estimation of heavy metal concentration in agricultural soils with hyperspectral sensor data[J]. Environmental Monitoring & Assessment, 2019, 191(7): 1-14.

    [3] [3] CAO Xianghai, WANG Xiaozhen, WANG Da, et al. Densely connected deep random forest for hyperspectral imagery classification[J]. International Journal of Remote Sensing, 2018, 40(3): 1-16.

              CAO Xianghai, WANG Xiaozhen, WANG Da, et al. Densely connected deep random forest for hyperspectral imagery classification[J]. International Journal of Remote Sensing, 2018, 40(3): 1-16.

    [4] [4] ZHANG Cuifen, YANG Xiaoxia, HAO Lina, et al. Lithological classification by synergizing hyperspectral Hyperion and high resolution WorldView-2 satellite images[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2017, 44(5): 613-622.

              ZHANG Cuifen, YANG Xiaoxia, HAO Lina, et al. Lithological classification by synergizing hyperspectral Hyperion and high resolution WorldView-2 satellite images[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2017, 44(5): 613-622.

    [7] [7] LIU Q, CAI Y, JIANG H, et al. Traffic state prediction using ISOMAP manifold learning[J]. Physica A: Statistical Mechanics and its Applications, 2018, 506(15): 532-541.

              LIU Q, CAI Y, JIANG H, et al. Traffic state prediction using ISOMAP manifold learning[J]. Physica A: Statistical Mechanics and its Applications, 2018, 506(15): 532-541.

    [9] [9] LI S, WANG Z, LI Y. Using Laplacian Eigenmap as Heuristic Information to Solve Nonlinear Constraints Defined on a Graph and Its Application in Distributed Range-Free Localization of Wireless Sensor Networks[J]. Neural Processing Letters, 2013, 37(3): 411-424.

              LI S, WANG Z, LI Y. Using Laplacian Eigenmap as Heuristic Information to Solve Nonlinear Constraints Defined on a Graph and Its Application in Distributed Range-Free Localization of Wireless Sensor Networks[J]. Neural Processing Letters, 2013, 37(3): 411-424.

    [10] [10] A Krizhevsky, I Sutskever, G E Hinton. Image Net classification with deep convolutional neural networks[C]//Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2012, 25(2): 1097-1105.

              A Krizhevsky, I Sutskever, G E Hinton. Image Net classification with deep convolutional neural networks[C]//Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2012, 25(2): 1097-1105.

    [13] [13] ZHANG L, ZHANG L, DU B. Deep learning for remote sensing data: A technical tutorial on the state of the art[J]. IEEE Geosci. Remote Sens. Mag., 2016, 4(2): 22-40.

              ZHANG L, ZHANG L, DU B. Deep learning for remote sensing data: A technical tutorial on the state of the art[J]. IEEE Geosci. Remote Sens. Mag., 2016, 4(2): 22-40.

    [14] [14] CHENG G, ZHOU P, HAN J. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Trans. Geosci. Remote Sens., 2016, 54(12): 7405-7415.

              CHENG G, ZHOU P, HAN J. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Trans. Geosci. Remote Sens., 2016, 54(12): 7405-7415.

    [15] [15] YAO X, HAN J, CHENG G, et al. Semantic annotation of high-resolution satellite images via weakly supervised learning[J]. IEEE Trans. Geosci. Remote Sens., 2015, 4(6): 3660-3671.

              YAO X, HAN J, CHENG G, et al. Semantic annotation of high-resolution satellite images via weakly supervised learning[J]. IEEE Trans. Geosci. Remote Sens., 2015, 4(6): 3660-3671.

    [16] [16] CHEN Y, LIN Z, ZHAO X, et al. Deep learning-based classification of hyperspectral data[J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2014, 7(6): 2094-2107.

              CHEN Y, LIN Z, ZHAO X, et al. Deep learning-based classification of hyperspectral data[J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2014, 7(6): 2094-2107.

    [17] [17] LIU Y, CAO G, SUN Q, et al. Hyperspectral classification via deep networks and superpixel segmentation[J]. Int. J. Remote Sens., 2015, 36(13): 3459-3482.

              LIU Y, CAO G, SUN Q, et al. Hyperspectral classification via deep networks and superpixel segmentation[J]. Int. J. Remote Sens., 2015, 36(13): 3459-3482.

    [18] [18] MA X, WANG H, GENG J. Spectral-spatial classification of hyperspectral image based on deep auto-encoder[J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2016, 9(9): 4073-4085.

              MA X, WANG H, GENG J. Spectral-spatial classification of hyperspectral image based on deep auto-encoder[J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2016, 9(9): 4073-4085.

    [19] [19] CHEN Y, ZHAO X, JIA X. Spectral-spatial classification of hyperspectral data based on deep belief network[J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2015, 8(6): 2381-2392.

              CHEN Y, ZHAO X, JIA X. Spectral-spatial classification of hyperspectral data based on deep belief network[J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2015, 8(6): 2381-2392.

    [20] [20] ZHONG P, GONG Z, LI S, et al. Learning to diversify deep belief networks for hyperspectral image classification[J]. IEEE Trans. Geosci. Remote Sens., 2017, 55(6): 3516-3530.

              ZHONG P, GONG Z, LI S, et al. Learning to diversify deep belief networks for hyperspectral image classification[J]. IEEE Trans. Geosci. Remote Sens., 2017, 55(6): 3516-3530.

    [22] [22] CHEN Y, JIANG H, LI C, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Trans. Geosci. Remote Sens., 2016, 54(10): 6232-6251.

              CHEN Y, JIANG H, LI C, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Trans. Geosci. Remote Sens., 2016, 54(10): 6232-6251.

    [23] [23] LI W, WU G, ZHANG F, et al. Hyperspectral image classification using deep pixel-pair features[J]. IEEE Trans. Geosci. Remote Sens., 2017, 55(2): 844-853.

              LI W, WU G, ZHANG F, et al. Hyperspectral image classification using deep pixel-pair features[J]. IEEE Trans. Geosci. Remote Sens., 2017, 55(2): 844-853.

    [25] [25] Enayattabar M, Ebrahimnejad A, Motameni H. Dijkstra algorithm for shortest path problem under interval-valued Pythagorean fuzzy environment[J]. Complex & Intelligent Systems, 2019, 5(2): 93-100.

              Enayattabar M, Ebrahimnejad A, Motameni H. Dijkstra algorithm for shortest path problem under interval-valued Pythagorean fuzzy environment[J]. Complex & Intelligent Systems, 2019, 5(2): 93-100.

    [28] [28] HU W, HUANG Y, LI W, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015(2): 1-12.

              HU W, HUANG Y, LI W, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015(2): 1-12.

    [29] [29] K Makantasis, K Karantzalos, A Doulamis, et al. Deep supervised learning for hyperspectral data classification through convolutional neural networks[C]//IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 4959-4962.

              K Makantasis, K Karantzalos, A Doulamis, et al. Deep supervised learning for hyperspectral data classification through convolutional neural networks[C]//IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 4959-4962.

    [30] [30] LI W, WU G, ZHANG F, et al. Hyperspectral image classification using deep pixel-pair features[J]. IEEE Trans. Geosci. Remote Sens., 2017, 55(2): 844-853.

              LI W, WU G, ZHANG F, et al. Hyperspectral image classification using deep pixel-pair features[J]. IEEE Trans. Geosci. Remote Sens., 2017, 55(2): 844-853.

    [31] [31] LEE H, KWON H. Going deeper with contextual CNN for hyperspectral image classification[J]. IEEE Trans. Image Process., 2017, 26(10): 4843-4855.

              LEE H, KWON H. Going deeper with contextual CNN for hyperspectral image classification[J]. IEEE Trans. Image Process., 2017, 26(10): 4843-4855.

    [32] [32] ZHONG M, LI W, DU Q. Diverse region-based CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2018, 27(6): 2623-2634.

              ZHONG M, LI W, DU Q. Diverse region-based CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2018, 27(6): 2623-2634.

    Tools

    Get Citation

    Copy Citation Text

    QI Yongfeng, CHEN Jing, HUO Yuanlian, LI Fayong. Hyperspectral Image Classification Algorithm Based on Multiscale Convolutional Neural Network[J]. Infrared Technology, 2020, 42(9): 855

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 28, 2019

    Accepted: --

    Published Online: Oct. 27, 2020

    The Author Email: Yongfeng QI (qiyf@nwnu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics