Chinese Journal of Lasers, Volume. 49, Issue 8, 0802021(2022)
Microstructure and Toughness of Laser Welding Seam of Medium Manganese Automobile Steel
[1] Gibbs P J, Moor E D, Merwin M J et al. Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel[J]. Metallurgical and Materials Transactions A, 42, 3691-3702(2011).
[2] Dong H, Wang M Q, Weng Y Q. Performance improvement of steels through M3 structure control[J]. Iron & Steel, 45, 1-7(2010).
[3] Hamada A S, Karjalainen L P, Somani M C. The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels[J]. Materials Science and Engineering: A, 467, 114-124(2007).
[4] Wang C Y, Chang Y, Zhou F L et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility[J]. Acta Metallurgica Sinica, 56, 400-410(2020).
[5] Aydin H, Essadiqi E, Jung I H et al. Development of 3rd generation AHSS with medium Mn content alloying compositions[J]. Materials Science and Engineering: A, 564, 501-508(2013).
[6] Jia Q, Liu L, Guo W et al. Microstructure and tensile-shear properties of resistance spot-welded medium Mn steel[J]. Metals, 8, 48(2018).
[7] Chen Y X, Wang H H, Cai H et al. Role of reversed austenite behavior in determining microstructure and toughness of advanced medium Mn steel by welding thermal cycle[J]. Materials, 11, E2127(2018).
[8] Li J H, Wang H H, Luo Q et al. Correlation between microstructure and impact toughness of weld heat-affected zone in 5wt.% manganese steels[J]. Journal of Iron and Steel Research International, 26, 761-770(2019).
[9] Cao Y, Zhao L, Peng Y et al. Effect of heat input on microstructure and mechanical properties of laser welded medium Mn steel joints[J]. Chinese Journal of Lasers, 45, 1102008(2018).
[10] Cao Y, Zhao L, Peng Y et al. Microstructure and mechanical properties of simulated heat affected zone of laser welded medium-Mn steel[J]. ISIJ International, 60, 2266-2275(2020).
[11] Zhao L, Cao Z, Zou J L et al. Keyhole morphological characteristics in high-power deep penetration fiber laser welding[J]. Chinese Journal of Lasers, 47, 1102005(2020).
[12] Zhang D, Zhao L, Liu A B et al. Understanding and controlling the influence of laser energy on penetration, porosity, and microstructure during laser welding[J]. Chinese Journal of Lasers, 48, 1502005(2021).
[13] Zhao L, Tsukamoto S, Arakane G et al. Influence of shielding oxygen content on weld homogeneity and fluid flow in laser-arc hybrid welding[J]. Chinese Journal of Lasers, 42, 0603006(2015).
[14] Rai R, Roy G G, DebRoy T. A computationally efficient model of convective heat transfer and solidification characteristics during keyhole mode laser welding[J]. Journal of Applied Physics, 101, 054909(2007).
[15] Cao Y[D]. Study on laser welding and properties of new generation medium manganese automobile steel, 44-46(2020).
[16] Ji Y P, Liu Z C, Ren H P. Twin crystal substructure of martensite in steel[J]. Transactions of Materials and Heat Treatment, 34, 162-165(2013).
[17] Zhang P, Chen Y L, Xiao W L et al. Twin structure of the lath martensite in low carbon steel[J]. Progress in Natural Science: Materials International, 26, 169-172(2016).
[18] Ahmad S, Lü L F, Fu L M et al. Effect of annealing on microstructure and mechanical properties of ultrafine-grained low-carbon medium-manganese steel produced by heavy warm rolling[J]. Acta Metallurgica Sinica (English Letters), 32, 361-371(2019).
[19] Wen M Y, Dong W C, Pang H Y et al. Microstructure and impact toughness of welding heat-affected zones of a Fe-Cr-Ni-Mo high strength steel[J]. Acta Metallurgica Sinica, 54, 501-511(2018).
[20] Hutchinson B, Komenda J, Rohrer G S et al. Heat affected zone microstructures and their influence on toughness in two microalloyed HSLA steels[J]. Acta Materialia, 97, 380-391(2015).
[21] Morito S, Tanaka H, Konishi R et al. The morphology and crystallography of lath martensite in Fe-C alloys[J]. Acta Materialia, 51, 1789-1799(2003).
[22] Li J K, Li Z D. EBSD characterization on the structure of ultra-low carbon martensite[J]. Journal of Chinese Electron Microscopy Society, 30, 394-398(2011).
[23] Wang C F, Wang M Q, Shi J et al. Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel[J]. Journal of Materials Science & Technology, 23, 659-664(2007).
[24] Ghosh A, Kundu S, Chakrabarti D. Effect of crystallographic texture on the cleavage fracture mechanism and effective grain size of ferritic steel[J]. Scripta Materialia, 81, 8-11(2014).
[25] Morito S, Yoshida H, Maki T et al. Effect of block size on the strength of lath martensite in low carbon steels[J]. Materials Science and Engineering: A, 438/439/440, 237-240(2006).
[26] Luo Z J, Shen J C, Su H et al. Effect of substructure on strength and toughness of lath martensite-bainite microstructure in a 10CrNi5MoV steel[J]. Transactions of Materials and Heat Treatment, 31, 65-71(2010).
Get Citation
Copy Citation Text
Yanjie Wang, Lin Zhao, Yun Peng, Yang Cao. Microstructure and Toughness of Laser Welding Seam of Medium Manganese Automobile Steel[J]. Chinese Journal of Lasers, 2022, 49(8): 0802021
Category: laser manufacturing
Received: Oct. 12, 2021
Accepted: Nov. 8, 2021
Published Online: Mar. 23, 2022
The Author Email: Lin Zhao (hhnds@aliyun.com), Yun Peng (pengyun@cisri.com.cn)