Chinese Journal of Lasers, Volume. 47, Issue 10, 1002006(2020)

Effect of Material States on Microstructure and Properties of GH4169 Superalloy Laser-Welded Joint

Sun Wenjun1, Wang Shanlin1, Tan Guanhua1, Chen Yuhua1, Xin Jijun2, Hong Min1, and Ke Liming1
Author Affiliations
  • 1Key Laboratory of Forming and Joining Technology for Aerospace Components, Nanchang Hangkong University, Nanchang, Jiangxi 330036, China
  • 2Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
  • show less
    References(21)

    [4] Zhao X B, Gu Y F, Lu J T et al. New research development of superalloy GH4169[J]. Rare Metal Materials and Engineering, 44, 768-774(2015).

    [6] Chen G Q, Zhang B G, Lü T M et al. Causes and control of welding cracks in electron-beam-welded superalloy GH4169 joints[J]. Transactions of Nonferrous Metals Society of China, 23, 1971-1976(2013).

    [7] Kobayashi K, Yamaguchi K, Hayakawa M et al. Grain size effect on high-temperature fatigue properties of alloy718[J]. Materials Letters, 59, 383-386(2005).

    [8] Ping D H, Gu Y F, Cui C Y et al. Grain boundary segregation in a Ni-Fe-based (Alloy 718) superalloy[J]. Materials Science and Engineering A, 456, 99-102(2007).

    [10] Hong J K, Park J H, Park N K et al. Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding[J]. Journal of Materials Processing Technology, 201, 515-520(2008).

    [11] Ram G D J, Reddy A V, Rao K P et al. Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds[J]. Journal of Materials Processing Technology, 167, 73-82(2005).

    [12] Zhu Q, Cheng L K, Wang C J et al. Effect of δ phase on size effect in microtensile deformation of a nickel-based superalloy[J]. Materials Science and Engineering A, 766, 138405(2019).

    [13] Li Z, Chen J, Sui S et al. The microstructure evolution and tensile properties of Inconel 718 fabricated by high-deposition-rate laser directed energy deposition[J]. Additive Manufacturing, 31, 100941(2020).

    [14] Li Y B, Meng D Q, Liu K Z et al. Simulation of microstructure formation during solidification in weld pool[J]. Transactions of the China Welding Institution, 31, 57-60, 64(2010).

    [15] Haines M, Plotkowski A, Frederick C L et al. A sensitivity analysis of the columnar-to-equiaxed transition for Ni-based superalloys in electron beam additive manufacturing[J]. Computational Materials Science, 155, 340-349(2018).

    [16] Niu S Q, Yin K X, You Q F et al. The alloying elements dispersion and its mechanisms in a Ni-based superalloy during electron beam remelting[J]. Vacuum, 166, 107-113(2019).

    [17] Han K, Wang H Q, Peng F et al. Investigation of microstructure and mechanical performance in IN738LC joint by vacuum electron beam welding[J]. Vacuum, 162, 214-227(2019).

    [18] Eriş R, Akdeniz M V, Mekhrabov A O. Atomic size effect of alloying elements on the formation, evolution and strengthening of γ'-Ni3Al precipitates in Ni-based superalloys[J]. Intermetallics, 109, 37-47(2019).

    [19] Im S Y, Jun S Y, Lee J W et al. Unidirectional columnar microstructure and its effect on the enhanced creep resistance of selective electron beam melted Inconel 718[J]. Journal of Alloys and Compounds, 817, 153320(2020).

    [20] Stinville J C, Yao E R, Callahan P G et al. Dislocation dynamics in a nickel-based superalloy via in situ transmission scanning electron microscopy[J]. Acta Materialia, 168, 152-166(2019).

    Tools

    Get Citation

    Copy Citation Text

    Sun Wenjun, Wang Shanlin, Tan Guanhua, Chen Yuhua, Xin Jijun, Hong Min, Ke Liming. Effect of Material States on Microstructure and Properties of GH4169 Superalloy Laser-Welded Joint[J]. Chinese Journal of Lasers, 2020, 47(10): 1002006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Mar. 16, 2020

    Accepted: --

    Published Online: Oct. 9, 2020

    The Author Email:

    DOI:10.3788/CJL202047.1002006

    Topics