Chinese Journal of Lasers, Volume. 48, Issue 15, 1501002(2021)

Introduction to Nanolasers

Jialu Xu1,2, Cunzheng Ning1,2、*, and Qihua Xiong3,4、**
Author Affiliations
  • 1Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • 2Tsinghua International Center for Nano-Optoelectronics, Tsinghua University, Beijing 100084, China
  • 3State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
  • 4Beijing Academy of Quantum Information Sciences, Beijing 100193, China
  • show less
    References(168)

    [1] Townes C H. The first laser[M]. //Garwin L, Lincoln T. A century of nature: twenty-one discoveries that changed science and the world, 107-112(2003).

    [2] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [3] Schawlow A L, Townes C H. Infrared and optical masers[J]. Physical Review, 112, 1940-1949(1958).

    [4] Hall R N, Fenner G E, Kingsley J D et al. Coherent light emission from GaAs junctions[J]. Physical Review Letters, 9, 366-368(1962).

    [5] Nakamura M, Yariv A, Yen H W et al. Optically pumped GaAs surface laser with corrugation feedback[J]. Applied Physics Letters, 22, 515-516(1973).

    [6] Reinhart F K, Logan R A, Shank C V. GaAs-AlxGa1-xAs injection lasers with distributed Bragg reflectors[J]. Applied Physics Letters, 27, 45-48(1975).

    [7] Jewell J L, Lee Y H, Walker S et al. Low-threshold electrically pumped vertical-cavity surface-emitting microlasers[J]. Electronics Letters, 25, 1123-1124(1989).

    [8] McCall S L, Levi A F J, Slusher R E et al. Whispering-gallery mode microdisk lasers[J]. Applied Physics Letters, 60, 289-291(1992).

    [9] Kawabe Y, Spiegelberg C, Schülzgen A et al. Whispering-gallery-mode microring laser using a conjugated polymer[J]. Applied Physics Letters, 72, 141-143(1998).

    [10] Painter O, Lee R K, Scherer A et al. Two-dimensional photonic band-gap defect mode laser[J]. Science, 284, 1819-1821(1999).

    [11] Ning C Z. Semiconductor nanolasers and the size-energy-efficiency challenge: a review[J]. Advanced Photonics, 1, 014002(2019).

    [12] Huang M H, Mao S, Feick H et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 292, 1897-1899(2001).

    [13] Chin A H, Vaddiraju S, Maslov A V et al. Near-infrared semiconductor subwavelength-wire lasers[J]. Applied Physics Letters, 88, 163115(2006).

    [14] Pan A L, Liu R B, Zhang Q L et al. Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts[J]. The Journal of Physical Chemistry C, 111, 14253-14256(2007).

    [17] Hill M T, Marell M, Leong E S P et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides[J]. Optics Express, 17, 11107-11112(2009).

    [18] Oulton R F, Sorger V J, Zentgraf T et al. Plasmon lasers at deep subwavelength scale[J]. Nature, 461, 629-632(2009).

    [19] Noginov M A, Zhu G, Belgrave A M et al. Demonstration of a spaser-based nanolaser[J]. Nature, 460, 1110-1112(2009).

    [20] Ning C Z. Semiconductor nanolasers[J]. Physica Status Solidi (b), 247, 774-788(2010).

    [21] Maslov A V, Ning C Z. Reflection of guided modes in a semiconductor nanowire laser[J]. Applied Physics Letters, 83, 1237-1239(2003).

    [22] Eaton S W, Fu A, Wong A B et al. Semiconductor nanowire lasers[J]. Nature Reviews Materials, 1, 1-11(2016).

    [23] Ma Y G, Guo X, Wu X Q et al. Semiconductor nanowire lasers[J]. Advances in Optics and Photonics, 5, 216-273(2013).

    [24] Choi H J, Johnson J C, He R R et al. Self-organized GaN quantum wire UV lasers[J]. The Journal of Physical Chemistry B, 107, 8721-8725(2003).

    [25] Qian F, Li Y, Gradecak S et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers[J]. Nature Materials, 7, 701-706(2008).

    [26] Agarwal R, Barrelet C J, Lieber C M. Lasing in single cadmium sulfide nanowire optical cavities[J]. Nano Letters, 5, 917-920(2005).

    [27] Pan A L, Zhou W C, Leong E S P et al. Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip[J]. Nano Letters, 9, 784-788(2009).

    [30] Chen R, Tran T T D, Ng K W et al. Nanolasers grown on silicon[J]. Nature Photonics, 5, 170-175(2011).

    [31] Ren D D, Ahtapodov L, Nilsen J S et al. Single-mode near-infrared lasing in a GaAsSb-based nanowire superlattice at room temperature[J]. Nano Letters, 18, 2304-2310(2018).

    [32] Fan F, Liu Z C, Sun M H et al. Mid-infrared lasing in lead sulfide subwavelength wires on silicon[J]. Nano Letters, 20, 470-477(2020).

    [33] Ning C Z, Dou L T, Yang P D. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions[J]. Nature Reviews Materials, 2, 17070(2017).

    [34] Kuykendall T, Ulrich P, Aloni S et al. Complete composition tunability of InGaN nanowires using a combinatorial approach[J]. Nature Materials, 6, 951-956(2007).

    [35] Pan A L, Liu R B, Sun M H et al. Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate[J]. ACS Nano, 4, 671-680(2010).

    [36] Fan F, Liu Z C, Yin L J et al. Simultaneous green and red lasing in a single CdSSe heterostructure nanosheet at room temperature[C]. //ISLC 2012 International Semiconductor Laser Conference, October 7-10, 2012, San Diego, CA, USA., 72-73(2012).

    [38] Fan F, Turkdogan S, Liu Z C et al. A monolithic white laser[J]. Nature Nanotechnology, 10, 796-803(2015).

    [40] Burstein E. Anomalous optical absorption limit in InSb[J]. Physical Review, 93, 632-633(1954).

    [41] Moss T S. The interpretation of the properties of indium antimonide[J]. Proceedings of the Physical Society. Section B, 67, 775-782(1954).

    [42] Banyai L, Koch S W. Absorption blue shift in laser-excited semiconductor microspheres[J]. Physical Review Letters, 57, 2722-2724(1986).

    [43] Yang Y H, Chen X Y, Feng Y et al. Physical mechanism of blue-shift of UV luminescence of a single pencil-like ZnO nanowire[J]. Nano Letters, 7, 3879-3883(2007).

    [44] Zhang Q, Shang Q Y, Shi J et al. Wavelength tunable plasmonic lasers based on intrinsic self-absorption of gain material[J]. ACS Photonics, 4, 2789-2796(2017).

    [45] Zhang Y Y, Saxena D, Aagesen M et al. Toward electrically driven semiconductor nanowire lasers[J]. Nanotechnology, 30, 192002(2019).

    [46] Hua B, Motohisa J, Kobayashi Y et al. Single GaAs/GaAsP coaxial core-shell nanowire lasers[J]. Nano Letters, 9, 112-116(2009).

    [47] Yan X, Wei W, Tang F L et al. Low-threshold room-temperature AlGaAs/GaAs nanowire/single-quantum-well heterostructure laser[J]. Applied Physics Letters, 110, 061104(2017).

    [48] Alanis J A, Saxena D, Mokkapati S et al. Large-scale statistics for threshold optimization of optically pumped nanowire lasers[J]. Nano Letters, 17, 4860-4865(2017).

    [49] Li C Y, Wright J B, Liu S et al. Nonpolar InGaN/GaN core-shell single nanowire lasers[J]. Nano Letters, 17, 1049-1055(2017).

    [50] Zhang X, Yi R, Gagrani N et al. Ultralow threshold, single-mode InGaAs/GaAs multiquantum disk nanowire lasers[J]. ACS Nano, 15, 9126-9133(2021).

    [51] Alanis J A, Lysevych M, Burgess T et al. Optical study of p-doping in GaAs nanowires for low-threshold and high-yield lasing[J]. Nano Letters, 19, 362-368(2019).

    [52] Chen S, Jansson M, Stehr J E et al. Dilute nitride nanowire lasers based on a GaAs/GaNAs core/shell structure[J]. Nano Letters, 17, 1775-1781(2017).

    [53] Zhu H M, Fu Y P, Meng F et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors[J]. Nature Materials, 14, 636-642(2015).

    [54] Alanis J A, Chen Q, Lysevych M et al. Threshold reduction and yield improvement of semiconductor nanowire lasers: via processing-related end-facet optimization[J]. Nanoscale Advances, 1, 4393-4397(2019).

    [55] Xiao Y, Meng C, Wang P et al. Single-nanowire single-mode laser[J]. Nano Letters, 11, 1122-1126(2011).

    [57] Gargas D J, Moore M C, Ni A et al. Whispering gallery mode lasing from zinc oxide hexagonal nanodisks[J]. ACS Nano, 4, 3270-3276(2010).

    [58] Kim H, Lee W J, Farrell A C et al. Monolithic InGaAs nanowire array lasers on silicon-on-insulator operating at room temperature[J]. Nano Letters, 17, 3465-3470(2017).

    [59] Sco A C, Kim S, Shapiro J N et al. Bottom-up photonic crystal lasers[J]. Nano Letters, 11, 5387-5390(2011).

    [60] Kong J Y, Chu S, Huang J et al. Use of distributed Bragg reflectors to enhance Fabry-Pérot lasing in vertically aligned ZnO nanowires[J]. Applied Physics A, 110, 23-28(2013).

    [61] Heo J, Jahangir S, Xiao B et al. Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity[J]. Nano Letters, 13, 2376-2380(2013).

    [62] Takiguchi M, Yokoo A, Nozaki K et al. Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal[J]. APL Photonics, 2, 046106(2017).

    [63] Duan X F, Huang Y, Agarwal R et al. Single-nanowire electrically driven lasers[J]. Nature, 421, 241-245(2003).

    [64] Li K H, Liu X, Zhao S et al. Ultralow threshold electrically injected AlGaN nanowire ultraviolet lasers on Si[J]. Proceedings of SPIE, 9363, 93631D(2015).

    [65] Li D, Ning C Z. Electrical injection in longitudinal and coaxial heterostructure nanowires: a comparative study through a three-dimensional simulation[J]. Nano Letters, 8, 4234-4237(2008).

    [67] Kojima A, Teshima K, Shirai Y et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 131, 6050-6051(2009).

    [68] Zhang Q, Shang Q Y, Su R et al. Halide perovskite semiconductor lasers: materials, cavity design, and low threshold[J]. Nano Letters, 21, 1903-1914(2021).

    [69] Kondo S, Suzuki K, Saito T et al. Photoluminescence and stimulated emission from microcrystalline CsPbCl3 films prepared by amorphous-to-crystalline transformation[J]. Physical Review B, 70, 205322(2004).

    [71] Xing J, Liu X F, Zhang Q et al. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers[J]. Nano Letters, 15, 4571-4577(2015).

    [72] Evans T J S, Schlaus A, Fu Y P et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires[J]. Advanced Optical Materials, 6, 1700982(2018).

    [73] Shang Q Y, Li M L, Zhao L Y et al. Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser[J]. Nano Letters, 20, 6636-6643(2020).

    [74] Li G Y, Liu X F, Wang X Z et al. Purified plasmonic lasing with strong polarization selectivity by reflection[J]. Optics Express, 23, 15657-15669(2015).

    [75] Wu Z Y, Chen J, Mi Y et al. All-inorganic CsPbBr3 nanowire based plasmonic lasers[J]. Advanced Optical Materials, 6, 1800674(2018).

    [76] Kwon S H, Kang J H, Seassal C et al. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity[J]. Nano Letters, 10, 3679-3683(2010).

    [77] Tiguntseva E, Koshelev K, Furasova A et al. Room-temperature lasing from Mie-resonant nonplasmonic nanoparticles[J]. ACS Nano, 14, 8149-8156(2020).

    [78] Rayleigh L. The problem of the whispering gallery[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 20, 1001-1004(1910).

    [79] Ashkin A, Dziedzic J M. Observation of resonances in the radiation pressure on dielectric spheres[J]. Physical Review Letters, 38, 1351-1354(1977).

    [80] Lin H B, Campillo A J. CW nonlinear optics in droplet microcavities displaying enhanced gain[J]. Physical Review Letters, 73, 2440-2443(1994).

    [81] Tzeng H M, Wall K F, Long M B et al. Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances[J]. Optics Letters, 9, 499-501(1984).

    [82] Schäfer J, Mondia J P, Sharma R et al. Quantum dot microdrop laser[J]. Nano Letters, 8, 1709-1712(2008).

    [83] Wang Y, Ta V D, Leck K S et al. Robust whispering-gallery-mode microbubble lasers from colloidal quantum dots[J]. Nano Letters, 17, 2640-2646(2017).

    [84] Braginsky V B, Gorodetsky M L, Ilchenko V S. Quality-factor and nonlinear properties of optical whispering-gallery modes[J]. Physics Letters A, 137, 393-397(1989).

    [85] Yang L, Vahala K J. Gain functionalization of silica microresonators[J]. Optics Letters, 28, 592-594(2003).

    [86] Snee P T, Chan Y, Nocera D G et al. Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite[J]. Advanced Materials, 17, 1131-1136(2005).

    [87] Lacey S, White I M, Sun Y Z et al. Versatile opto-fluidic ring resonator lasers with ultra-low threshold[J]. Optics Express, 15, 15523-15530(2007).

    [88] Cao H, Xu J Y, Xiang W H et al. Optically pumped InAs quantum dot microdisk lasers[J]. Applied Physics Letters, 76, 3519-3521(2000).

    [89] Czekalla C, Sturm C, Schmidt-Grund R et al. Whispering gallery mode lasing in zinc oxide microwires[J]. Applied Physics Letters, 92, 241102(2008).

    [90] Sun L X, Chen Z H, Ren Q J et al. Direct observation of whispering gallery mode polaritons and their dispersion in a ZnO tapered microcavity[J]. Physical Review Letters, 100, 156403(2008).

    [91] Tamboli A C, Haberer E D, Sharma R et al. Room-temperature continuous-wave lasing in GaN/InGaN microdisks[J]. Nature Photonics, 1, 61-64(2007).

    [92] Liu X F, Ha S T, Zhang Q et al. Whispering gallery mode lasing from hexagonal shaped layered lead iodide crystals[J]. ACS Nano, 9, 687-695(2015).

    [93] Zhang Q, Su R, Liu X F et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets[J]. Advanced Functional Materials, 26, 6238-6245(2016).

    [94] Ye Y, Wong Z J, Lu X F et al. Monolayer excitonic laser[J]. Nature Photonics, 9, 733-737(2015).

    [95] Qian S X, Snow J B, Tzeng H M et al. Lasing droplets: highlighting the liquid-air interface by laser emission[J]. Science, 231, 486-488(1986).

    [96] Ding K, Diaz J O, Bimberg D et al. Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects[J]. Laser & Photonics Reviews, 9, 488-497(2015).

    [97] Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems[J]. Physical Review Letters, 90, 027402(2003).

    [98] Azzam S I, Kildishev A V, Ma R M et al. Ten years of spasers and plasmonic nanolasers[J]. Light, Science & Applications, 9, 90(2020).

    [100] Ding K, Liu Z C, Yin L J et al. Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection[J]. Physical Review B, 85, 041301(2012).

    [102] Wang S, Li B, Wang X Y et al. High-yield plasmonic nanolasers with superior stability for sensing in aqueous solution[J]. ACS Photonics, 4, 1355-1360(2017).

    [103] Wang X Y, Wang Y L, Wang S et al. Lasing enhanced surface plasmon resonance sensing[J]. Nanophotonics, 6, 472-478(2017).

    [104] Galanzha E I, Weingold R, Nedosekin D A et al. Spaser as a biological probe[J]. Nature Communications, 8, 15528(2017).

    [106] Zhang C, Lu Y H, Ni Y et al. Plasmonic lasing of nanocavity embedding in metallic nanoantenna array[J]. Nano Letters, 15, 1382-1387(2015).

    [107] van Beijnum F, van Veldhoven P J, Geluk E J et al. Surface plasmon lasing observed in metal hole arrays[J]. Physical Review Letters, 110, 206802(2013).

    [108] Li D B, Ning C Z. Peculiar features of confinement factors in a metal-semiconductor waveguide[J]. Applied Physics Letters, 96, 181109(2010).

    [109] Noda S. Seeking the ultimate nanolaser[J]. Science, 314, 260-261(2006).

    [110] Ma R M, Oulton R F. Applications of nanolasers[J]. Nature Nanotechnology, 14, 12-22(2019).

    [111] Ning C Z. What is laser threshold?[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1503604(2013).

    [112] Chow W W, Reitzenstein S. Quantum-optical influences in optoelectronics: an introduction[J]. Applied Physics Reviews, 5, 041302(2018).

    [113] Purcell E M. Spontaneous emission probabilities at radio frequencies bt-confined electrons and photons: new physics and applications[M], 839(1995).

    [114] Stockman M I. The spaser as a nanoscale quantum generator and ultrafast amplifier[J]. Journal of Optics, 12, 024004(2010).

    [115] Lau E K, Lakhani A, Tucker R S et al. Enhanced modulation bandwidth of nanocavity light emitting devices[J]. Optics Express, 17, 7790-7799(2009).

    [116] Perahia R, Alegre T P M, Safavi-Naeini A H et al. Surface-plasmon mode hybridization in subwavelength microdisk lasers[J]. Applied Physics Letters, 95, 201114(2009).

    [117] Lu C Y, Chang S W, Chuang S L et al. Metal-cavity surface-emitting microlaser at room temperature[J]. Applied Physics Letters, 96, 251101(2010).

    [118] Yu K, Lakhani A, Wu M C. Subwavelength metal-optic semiconductor nanopatch lasers[J]. Optics Express, 18, 8790-8799(2010).

    [120] Keshmarzi E K, Tait R N, Berini P. Single-mode surface plasmon distributed feedback lasers[J]. Nanoscale, 10, 5914-5922(2018).

    [121] Lakhani A M, Kim M K, Lau E K et al. Plasmonic crystal defect nanolaser[J]. Optics Express, 19, 18237-18245(2011).

    [122] Marell M J H, Smalbrugge B, Geluk E J et al. Plasmonic distributed feedback lasers at telecommunications wavelengths[J]. Optics Express, 19, 15109-15118(2011).

    [124] Zhu W Q, Xu T, Wang H Z et al. Surface plasmon polariton laser based on a metallic trench Fabry-Perot resonator[J]. Science Advances, 3, e1700909(2017).

    [125] Shen K C, Ku C T, Hsieh C et al. Deep-ultraviolet hyperbolic metacavity laser[J]. Advanced Materials, 30, 1706918(2018).

    [126] Zhang Q, Li G Y, Liu X F et al. A room temperature low-threshold ultraviolet plasmonic nanolaser[J]. Nature Communications, 5, 4953(2014).

    [127] Chou Y H, Wu Y M, Hong K B et al. High-operation-temperature plasmonic nanolasers on single-crystalline aluminum[J]. Nano Letters, 16, 3179-3186(2016).

    [128] Wang S, Wang X Y, Li B et al. Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit[J]. Nature Communications, 8, 1889(2017).

    [129] Lu Y J, Kim J, Chen H Y et al. Plasmonic nanolaser using epitaxially grown silver film[J]. Science, 337, 450-453(2012).

    [131] Hayenga W E, Garcia-Gracia H, Hodaei H et al. Second-order coherence properties of metallic nanolasers[J]. Optica, 3, 1187-1193(2016).

    [132] Pan S H, Gu Q, Amili A E et al. Dynamic hysteresis in a coherent high-β nanolaser[J]. Optica, 3, 1260-1265(2016).

    [133] Wang S, Chen H Z, Ma R M. High performance plasmonic nanolasers with external quantum efficiency exceeding 10%[J]. Nano Letters, 18, 7942-7948(2018).

    [134] Hill M T. Electrically pumped metallic and plasmonic nanolasers[J]. Chinese Physics B, 27, 114210(2018).

    [135] Hill M T, Oei Y S, Smalbrugge B et al. Lasing in metallic-coated nanocavities[J]. Nature Photonics, 1, 589-594(2007).

    [136] Ding K, Liu Z C, Yin L J et al. Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K[J]. Applied Physics Letters, 98, 231108(2011).

    [137] Lee J H, Khajavikhan M, Simic A et al. Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers[J]. Optics Express, 19, 21524-21531(2011).

    [138] Ding K, Hill M T, Liu Z C et al. Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature[J]. Optics Express, 21, 4728-4733(2013).

    [139] Yang X, Ni P N, Jing P T et al. Room temperature electrically driven ultraviolet plasmonic lasers[J]. Advanced Optical Materials, 7, 1801681(2019).

    [140] Fedyanin D Y, Krasavin A V, Arsenin A V et al. Lasing at the nanoscale: coherent emission of surface plasmons by an electrically driven nanolaser[J]. Nanophotonics, 9, 3965-3975(2020).

    [141] Ma R M, Oulton R F, Sorger V J et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection[J]. Nature Materials, 10, 110-113(2011).

    [142] MacDonald K F, Sámson Z L, Stockman M I et al. Ultrafast active plasmonics[J]. Nature Photonics, 3, 55-58(2009).

    [144] Pan S H, Deka S S, El Amili A et al. Nanolasers: second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures[J]. Progress in Quantum Electronics, 59, 1-18(2018).

    [145] Shore K A. Modulation bandwidth of metal-clad semiconductor nanolasers with cavity-enhanced spontaneous emission[J]. Electronics Letters, 46, 1688-1689(2010).

    [146] Suhr T, Gregersen N, Yvind K et al. Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission[J]. Optics Express, 18, 11230-11241(2010).

    [147] Sidiropoulos T P H, Roder R, Geburt S et al. Ultrafast plasmonic nanowire lasers near the surface plasmon frequency[J]. Proceedings of SPIE, 9546, 95460W(2015).

    [148] Meng X, Guler U, Kildishev A V et al. Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity[J]. Scientific Reports, 3, 1241(2013).

    [150] Ning C Z. Semiconductor nanowire lasers[M], 86, 455-468(2012).

    [151] Yan R X, Gargas D, Yang P D. Nanowire photonics[J]. Nature Photonics, 3, 569-576(2009).

    [152] Couteau C, Larrue A, Wilhelm C et al. Nanowire lasers[J]. Nanophotonics, 4, 90-107(2015).

    [153] Quan L N, Kang J, Ning C Z et al. Nanowires for photonics[J]. Chemical Reviews, 119, 9153-9169(2019).

    [154] Ning C Z. Nanolasers: current status of the trailblazer of synergetics[M]. //Wunner G, Pelster A. Selforganization in complex systems: the past, present, and future of synergetics. Understanding complex systems, 109-128(2016).

    [155] Ding K, Ning C Z. Metallic subwavelength-cavity semiconductor nanolasers[J]. Light: Science & Applications, 1, e20(2012).

    [156] Ding K, Ning C Z. Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers[J]. Semiconductor Science and Technology, 28, 124002(2013).

    [157] Gwo S, Shih C K. Semiconductor plasmonic nanolasers: current status and perspectives[J]. Reports on Progress in Physics. Physical Society, 79, 086501(2016).

    [158] Ma R M, Oulton R F, Sorger V J et al. Plasmon lasers: coherent light source at molecular scales[J]. Laser & Photonics Reviews, 7, 1-21(2013).

    [159] Gu Q, Fainman Y. Semiconductor nanolasers[M](2017).

    [162] Wu S, Buckley S, Schaibley J R et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds[J]. Nature, 520, 69-72(2015).

    [163] Li Y Z, Zhang J X, Huang D D et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity[J]. Nature Nanotechnology, 12, 987-992(2017).

    [164] Wang Z, Sun H, Zhang Q Y et al. Excitonic complexes and optical gain in two-dimensional molybdenum ditelluride well below the Mott transition[J]. Light, Science & Applications, 9, 39(2020).

    [165] Zhao J X, Su R, Fieramosca A et al. Ultralow threshold polariton condensate in a monolayer semiconductor microcavity at room temperature[J]. Nano Letters, 21, 3331-3339(2021).

    [166] Su R, Wang J, Zhao J X et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites[J]. Science Advances, 4, eaau0244(2018).

    [167] Su R, Diederichs C, Wang J et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets[J]. Nano Letters, 17, 3982-3988(2017).

    [168] Lin K B, Xing J, Quan L N et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent[J]. Nature, 562, 245-248(2018).

    Tools

    Get Citation

    Copy Citation Text

    Jialu Xu, Cunzheng Ning, Qihua Xiong. Introduction to Nanolasers[J]. Chinese Journal of Lasers, 2021, 48(15): 1501002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Apr. 6, 2021

    Accepted: Jul. 6, 2021

    Published Online: Aug. 6, 2021

    The Author Email: Cunzheng Ning (cning@tsinghua.edu.cn), Qihua Xiong (qihua_xiong@tsinghua.edu.cn)

    DOI:10.3788/CJL202148.1501002

    Topics