Journal of the Chinese Ceramic Society, Volume. 53, Issue 5, 1066(2025)
Regulation of Luminescence Property and Application of CaNaLaZn3(TeO6)2:Eu3+ Phosphor
[1] [1] CHEN J X, HE D M, WANG W X, et al. A double perovskite structure Ca2InTaO6: Sm3+ orange-red phosphor with high thermal stability for high CRI w-LEDs and plant growth lighting[J]. J Lumin, 2024, 265: 120252.
[3] [3] ZHAO D, LI Y N, ZHANG R J, et al. Tuning emission from greenish to blueviachemical composition modulation in solid solutions (Sr1-yCay)2Sb2O7: Bi3+ under near-UV light excitation[J]. ACS Sustainable Chem Eng, 2021, 9(22): 7569-7577.
[4] [4] RU J J, ZENG F, ZHAO B, et al. Development of red phosphor Li8CaLa2Ta2O13: Eu3+ for WLEDs and anti-counterfeiting applications[J]. ChemPhysMater, 2024, 3(2): 194-203.
[5] [5] HE C, TAKEDA T, HUANG Z H, et al. Powder synthesis and luminescence of a novel yellow-emitting Ba5Si11Al7N25: Eu2+ phosphor discovered by a single-particle-diagnosis approach for warm w-LEDs[J]. Chem Eng J, 2023, 455: 140932.
[6] [6] LIAO H X, ZHAO M, MOLOKEEV M S, et al. Learning from a mineral structure toward an ultra-narrow-band blue-emitting silicate phosphor RbNa3(Li3SiO4)4: Eu2[J]. Angew Chem Int Ed Engl, 2018, 57(36): 11728-11731.
[7] [7] YANG L R, LIU M Y, GAO Z X, et al. Adjustable white-light emission performance of Dy3+/Tm3+ double-doped glass and NaGd(MoO4)2 glass ceramic[J]. Opt Mater, 2023, 137: 113562.
[8] [8] FANG M H, BAO Z, HUANG W T, et al. Evolutionary generation of phosphor materials and their progress in future applications for light-emitting diodes[J]. Chem Rev, 2022, 122(13): 11474-11513.
[9] [9] LIU Y Y, SHI W, LIAO D L, et al. Novel double-perovskite Mg2InSbO6: Sm3+ phosphor with excellent heat-resistant performance and high color purity used in white LEDs[J]. J Am Ceram Soc, 2021, 104(11): 5966-5980.
[10] [10] RU J J, YING S M, ZHENG W X, et al. A promising red-emitting phosphor Li2 Eu4 (MoO4)7 prepared by sol-gel method[J]. Mater Res Bull, 2016, 84: 468-473.
[11] [11] LIU Y K, LIU Y G, YU H J, et al. Enhanced luminescence efficiency and thermal stabilityviaintroduction of non-rare earth Bi3+ in Gd5Si2BO13: Eu3+[J]. J Rare Earths, 2023, 41(7): 989-996.
[13] [13] OUYANG X, LIU R Y, HU X P, et al. Preparation, characterization, and application of a red phosphor Ca2InTaO6: Eu3+ in w-LEDs and latent fingerprint detection[J]. J Alloys Compd, 2023, 939: 168715.
[14] [14] WANG S Y, SUN Q, DEVAKUMAR B, et al. Novel highly efficient and thermally stable Ca2GdTaO6: Eu3+ red-emitting phosphors with high color purity for UV/blue-excited WLEDs[J]. J Alloys Compd, 2019, 804: 93-99.
[15] [15] SUN P F, ZHONG Y F, LI Z X, et al. Luminescence properties of novel Eu3+-doped tantalate NaCaTiTaO6 red-emitting phosphors for solid-state lighting[J]. J Am Ceram Soc, 2019, 102(10): 6077-6086.
[16] [16] ZENG F, RU J J, ZHAO B, et al. Development of a novel Eu3+-doped tantalate red-emitting phosphorfor w-LEDs application[J]. J Rare Earths, 2024, 42(8): 1479-1488.
[17] [17] PARK J Y, JUNG J Y, YANG H K. Development of reddish orange-emitting Y2Sn2O7: Eu3+phosphors for latent fingerprint detection and anti-counterfeit security ink[J]. Mater Res Bull, 2024, 175: 112756.
[18] [18] HUA Y, WANG T, YU J S, et al. Tailoring of strong orange-red-emitting materials for luminescence lifetime thermometry, anti-counterfeiting, and solid-state lighting applications[J]. Mater Today Chem, 2022, 25: 100945.
[19] [19] YUE L, ZHENG X Z, XIA P J, et al. Structure and optical properties of stable Bi/Eu codoped borophosphate La7O6(BO3)(PO4)2 phosphors for application in wLEDs[J]. Ceram Int, 2024, 50(7): 10947-10958.
[20] [20] LIN Y F, HE D M, JIANG K Z, et al. A novel red-emitting K5La(MoO4)4: Eu3+ phosphor with a high quantum efficiency for w-LEDs and visualization of latent fingerprints[J]. J Alloys Compd, 2023, 960: 170563.
[21] [21] LI K, VAN DEUN R. Effectively realizing broadband spectral conversion of UV/visible to near-infrared emission in (Na, K)Mg(La, Gd)TeO6: Mn4+, Nd3+, Yb3+ materials for c-Si solar cellsviaefficient energy transfer[J]. J Mater Chem C, 2018, 6(27): 7302-7310.
[22] [22] SUN X K, HUANG Z Z, FU X H, et al. Generation of warm white light by doping Sm3+ in Ca3TeO6: Dy3+ fluorescent powders[J]. Ceram Int, 2020, 46(9): 14252-14256.
[23] [23] JAROSCH D, ZEMANN J. Yafsoanite: A garnet type calcium- tellurium(VI)-zinc oxide[J]. Mineral Petrol, 1989, 40(2): 111-116.
[24] [24] DENG B, CHEN J, ZHOU C S, et al. Photoluminescence properties of a Dy3+, Na+-activated yafsoanite Ca3Zn3Te2O12 phosphor with excellent thermal stability[J]. J Mater Sci Mater Electron, 2019, 30(18): 17003-17010.
[25] [25] CAO R P, HUANG Z Y, LAN B, et al. Adjustable luminescence properties of Eu3+ and Bi3+ codoped Ca3Zn3Te2O12 phosphor[J]. Mater Res Bull, 2022, 152: 111851.
[26] [26] ZHANG L X, CHEN S G, ZHAO S C, et al. Thermal stability and luminescence of novel garnet-type yafsoanite Ca3Zn3(TeO6)2: Sm3+ phosphors for white LEDs[J]. Ceram Int, 2021, 47(9): 11887-11898.
[27] [27] XIA Z G, MA C G, MOLOKEEV M S, et al. Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx) (Al1-xSi1+x) O7: Eu(2+) phosphor[J]. J Am Chem Soc, 2015, 137(39): 12494-12497.
[28] [28] XIA Z G, POEPPELMEIER K R. Chemistry-inspired adaptable framework structures[J]. Acc Chem Res, 2017, 50(5): 1222-1230.
[29] [29] NI Q W, MEI Z B, LI C X, et al. Realization of an optical thermometerviastructural confinement and energy transfer[J]. Inorg Chem, 2021, 60(24): 19315-19327.
[30] [30] CHENG K, LIU X Y, HUANG W C, et al. A novel co-substitution strategy to enhance the luminescence performance of Zn2TiO4: Cr3+ phosphor[J]. Mater Sci Semicond Process, 2024, 169: 107923.
[31] [31] ZHANG T, LIU F S, LONG L F, et al. Y2MAl4SiO12: Cr3+ (M=Mg, Ca, Sr, Ba) near-infrared phosphorsviachemical unit co-substitution strategy for plant growth[J]. Opt Mater, 2023, 144: 114346.
[32] [32] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Cryst A, 1976, 32(5): 751-767.
[34] [34] XU S, ZHU D Y, WU F G, et al. High quantum efficiency and excellent thermal stability in Eu3+-activated CaY2ZrGaAl3O12 phosphors for wLEDs[J]. Opt Mater, 2024, 150: 115284.
[35] [35] FENG J J, CHEN L F, XIE J T, et al. Interrupting the long-range energy migration among Eu3+ by the introduction of unequivalent[NaO8]units to achieve both high quenching concentration and quantum yield in NaY2Ga2InGe2O12[J]. Mater Today Chem, 2024, 36: 101979.
[36] [36] LI L, ZHU Y L, ZHOU X H, et al. Visible-light excited luminescent thermometer based on single lanthanide organic frameworks[J]. Adv Funct Materials, 2016, 26(47): 8677-8684.
[37] [37] LIU N, SI J Y, CAI G M, et al. Crystal structure, luminescence properties and energy transfer of Eu3+/Dy3+ doped GdNbTiO6 broad band excited phosphors[J]. RSC Adv, 2016, 6(56): 50797-50807.
[38] [38] HALAPPA P, RAJASHEKAR H M, SHIVAKUMARA C. Synthesis and structural characterization of orange red light emitting Sm3+ activated BiOCl phosphor for WLEDs applications[J]. J Alloys Compd, 2019, 785: 169-177.
[39] [39] NAYAK P, NANDA S S, PATTNAIK S, et al. Yb-Mn dimer tailored upconversion luminescence in CaWO4: Er3+/Yb3+/Mn2+ green phosphors for thermometry and optical heating[J]. Opt Laser Technol, 2023, 159: 108990.
[40] [40] LOHIA N, BISHNOI S, GUPTA G, et al. Solution route to process BaZnO2: Eu3+ nano-phosphor for White-LED applications[J]. Mater Chem Phys, 2022, 289: 126418.
[41] [41] MA Y Y, LIU R Y, GENG X, et al. Synthesis and spectroscopic analysis of Eu3+-doped tungsten bronze Sr5YTi3Nb7O30 phosphors for w-LED and visualization of latent fingerprint[J]. Ceram Int, 2022, 48(3): 4080-4089.
[42] [42] XU S, ZHU D Y, GONG D L, et al. Study on the structure and luminescence properties of a novel Li3Sc2(PO4)3: Eu3+ orange-red emission phosphor for wLEDs[J]. Opt Mater, 2023, 143: 114239.
[43] [43] TANG Z B, XU C L, WEI X R, et al. Improved photoluminescence intensity and thermal stability brought by increasing Eu3+ content in KBaY1-xEuxSi2O7 solid-solution phosphors[J]. J Alloys Compd, 2017, 695: 2745-2750.
[44] [44] DAI P P, CAO J, ZHANG X T, et al. Bright and high-color-rendering white light-emitting diode using color-tunable oxychloride and oxyfluoride phosphors[J]. J Phys Chem C, 2016, 120(33): 18713-18720.
Get Citation
Copy Citation Text
RU Jingjing, ZHAO Bing, XU Yuanyi, HE Jiaxin, GUO Feiyun. Regulation of Luminescence Property and Application of CaNaLaZn3(TeO6)2:Eu3+ Phosphor[J]. Journal of the Chinese Ceramic Society, 2025, 53(5): 1066
Category:
Received: Oct. 8, 2024
Accepted: May. 29, 2025
Published Online: May. 29, 2025
The Author Email: