Journal of Advanced Dielectrics, Volume. 13, Issue 1, 2242007(2023)
Dielectric temperature stability and energy storage performance of NBT-based lead-free ceramics for Y9P capacitors
[1] H. Kishi, Y. Mizuno, H. Chazono. Base-metal electrode-multilayer ceramic capacitors: Past, present and future perspectives. Jpn. J. Appl. Phys., 42, 1(2003).
[2] J. Wenxu, H. Yudong, Z. Mupeng, X. Yuru, Z. Mankang, Y. Kuiyong, C. Huarong, S. Shuying, X. Jie. Advances in lead-free high-temperature dielectric materials for ceramic capacitor application. IET Nanodielectr., 1, 3(2018).
[3] R. W. Johnson, J. L. Evans, P. Jacobsen, J. R. R. Thompson, M. Christopher. The changing automotive environment: High-temperature electronics. IEEE Trans. Electron. Packag. Manuf., 27, 164(2004).
[4] M. Shiga, M. Hagiwara, S. Fujihara. (Bi1/2K1/2)TiO3-SrTiO3 solid-solution ceramics for high-temperature capacitor applications. Ceram Int., 46, 10242(2020).
[5] P. R. H. Zhao, Q. Hua, L. Liu, X. Wang, Y. Wan, F. Yan, G. Zhao, D. Wang. Temperature stable (1-x)(0.9Na0.5Bi0.5TiO3-0.1BiAlO3)-xNaTaO3 ceramics and capacitors with ultra-wide operational range. J. Alloys Compd., 886, 161315(2021).
[6] Y. Sun, H. Liu, H. Hao, L. Zhang, S. Zhang. The role of Co in the BaTiO3–Na0.5Bi0.5TiO3 based X9R ceramics. Ceram Int., 41, 931(2015).
[7] R. S. Demcko. Evolution of high-temperature capacitors. Proc. IEEE Electron. Components Conf, 390.
[8] R. Muhammad, A. Ali, J. Camargo, M. S. Castro, W. Lei, K. X. Song, D. W. Wang. Enhanced thermal stability in dielectric properties of NaNbO3-modified BaTiO3-BiMg1/2Ti1/2O3 ceramics for X9R-MLCC applications. Crystals, 12, 10(2022).
[9] H. L. Cheng, H. L. Du, W. C. Zhou, D. M. Zhu, F. Luo, B. X. Xu. Bi(Zn2/3Nb1/3)O3-(K0.5Na0.5)NbO3 High-temperature lead-free ferroelectric ceramics with low capacitance variation in a broad temperature usage range. J. Am. Ceram. Soc., 96, 833(2013).
[10] K. Hui, L. Chen, Z. Cen, P. Zhao, Y. Yu, L. Guo, X. H. Wang, L. T. Li. KNN based high dielectric constant X9R ceramics with fine grain structure and energy storage ability. J. Am. Ceram. Soc., 104, 5815(2021).
[11] E. A. Patterson, D. P. Cann. Relaxor to ferroelectric transitions in (Bi1/2Na1/2)TiO3-Bi(Zn1/2 Ti1/2)O3 solid solutions. J. Am. Ceram. Soc., 95, 3509(2012).
[12] A. Zeb, S. J. Milne. Stability of high-temperature dielectric properties for (1-x)Ba0.8Ca0.2TiO3-xBiMg0.5Ti0.5)O3 ceramics. J. Am. Ceram. Soc., 96, 2887(2013).
[13] D. Han, C. Wang, D. Lu, F. Hussain, D. Wang, F. Meng. A temperature stable (Ba1 − xCex)(Ti1 − x/2Mgx/2)O3 lead-free ceramic for X4D capacitors. J. Alloys Compd., 821, 153480(2020).
[14] Z. Li, C. Wang, Z. Wang, D. Zhang, Y. Qin, Q. Yang, Z. Wang, P. Zhao, S. Ma, M. Li, T. Ai, X. Yan, Y. Niu, B. Peng, S. Sun, D. Wang. Core-shell structure and dielectric properties of Ba0.6Sr0.4 − TiO3@Fe2O3 ceramics prepared by co-precipitation method. Crystals, 11, 623(2021).
[15] S. Zhou, Y. Pu, X. Zhao, T. Ouyang, J. Ji, Q. Zhang, C. Zhang, S. Sun, R. Sun, J. Li, D. Wang. Dielectric temperature stability and energy storage performance of NBT-based ceramics by introducing high-entropy oxide. J. Am. Ceram. Soc., 105, 4796(2022).
[16] H. Ji, D. Wang, W. Bao, Z. Lu, I. M. Reaney. Ultrahigh energy density in short-range tilted NBT-based lead-free multilayer ceramic capacitors by nanodomain percolation. Energy Stor. Mater., 38, 113(2021).
[17] L. Li, B. Zhang. The effect of bimodal model on the ultra-broad temperature stable BaTiO3–Na0.5Bi0.5TiO3–Nb2O5 system. Scr. Mater., 114, 170(2016).
[18] R. Dittmer, W. Jo, D. Damjanovic, J. Rodel. Lead-free high-temperature dielectrics with wide operational range. J Appl. Phys., 109, 346(2011).
[19] D. B. Miracle, O. N. Senkov. A critical review of high entropy alloys and related concepts. Acta Mater., 122, 448(2017).
[20] A. Amiri, R. Shahbazian-Yassar. Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. A, 9, 782(2021).
[21] S. Zhou, Y. Pu, X. Zhang, Y. Shi, Z. Gao, Y. Feng, G. Shen, X. Wang, D. Wang. High energy density, temperature stable lead-free ceramics by introducing high entropy perovskite oxide. Chem. Eng. J., 427, 131684(2022).
[22] F. Yan, X. Zhou, X. He, H. Bai, J. Zhai. Superior energy storage properties and excellent stability achieved in environment-friendly ferroelectrics via composition design strategy. Nano Energy, 75, 105012(2020).
[23] Q. Xu, Z. Song, W. Tang, H. Hao, L. Zhang, M. Appiah, M. Cao, Z. Yao, Z. He, H. Liu. Ultra-wide temperature stable dielectrics based on Bi0.5Na0.5TiO3-NaNbO3 system. J. Am. Ceram. Soc., 98, 3119(2015).
[24] D. Han, C. Wang, X. Wei, P. Wang, Q. Liu, F. Meng, Z. Zeng, D. Wang. Ultrahigh energy efficiency of (1-x)Ba0.85Ca0.15Zr0.1-Ti0.9O3-xBi(Mg0.5Sn0.5)O3 lead-free ceramics. J. Alloys Compd., 902, 163721(2022).
[25] J. Sui, H. Fan, H. Peng, J. Ma, A. K. Yadav, W. Chao, M. Zhang, G. Dong. Enhanced energy-storage performance and temperature-stable dielectric properties of (1-x)[(Na0.5Bi0.5)0.95Ba0.05]0.98La0.02TiO3-xK0.5Na0.5NbO3 lead-free ceramics - ScienceDirect. Ceram. Inter., 45, 20427(2019).
[26] W. G. Ma, Y. W. Zhu, M. A. Marwat, P. Y. Fan, B. Xie, D. Salamon, Z. G. Ye, H. B. Zhang. Enhanced energy-storage performance with excellent stability under low electric fields in BNT-ST relaxor ferroelectric ceramics. J. Mater. Chem. C, 7, 281(2019).
[27] E. Aksel, J. S. Forrester, B. Kowalski, M. Deluca, J. L. Jones. Structure and properties of Fe-modified Na0.5Bi0.5TiO3 at ambient and elevated temperature. Phys. Rev. B, 85, 3125(2012).
[28] T. Li, P. Chen, F. Li, C. Wang. Energy storage performance of Na0.5Bi0.5 TiO3-SrTiO3 lead-free relaxors modified by AgNb0.85Ta0.15O3. Chem. Eng. J., 406, 127151(2021).
[29] X. W. Jiang, H. Hao, Y. Yang, E. H. Zhou, S. J. Zhang, P. Wei, M. H. Cao, Z. H. Yao, H. X. Liu. Structure and enhanced dielectric temperature stability of BaTiO3-based ceramics by Ca ion B site-doping. JMAT., 7, 295(2021).
[30] Z. Chen, X. Bai, H. Wang, J. Du, Y. Zhang. Achieving high-energy storage performance in 0.67BiSmFeO3-0.33BaTiO3 lead-free relaxor ferroelectric ceramics. Ceram. Int., 46, 11549(2020).
[31] B. Zhang, W. Wu, A. Khesro, P. Liu, M. Mao, K. Song, R. Sun, D. Wang. Outstanding discharge energy density and efficiency of the bilayer nanocomposite films with BaTiO3-dispersed PVDF polymer and polyetherimide layer. Chem. Eng. J., 446, 136926(2022).
[32] H. Zhang, Q. Zhang, W. Ma, P. Fan, D. Salamon, S. T. Zhang, B. Nan, H. Tan, Z. G. Ye. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J. Mater. Chem. C, 8, 16648(2020).
[33] Z. F. Li, B. Shen, H. R. Zeng, X. D. Jian, S. G. Lu. Multifunctionality of lead-free BiFeO3-based ergodic relaxor ferroelectric ceramics: High energy storage performance and electrocaloric effect. J. Alloy. Comp., 803, 185(2019).
Get Citation
Copy Citation Text
Hongtian Li, Shiyu Zhou, Jianwei Zhao, Tingnan Yan, Yuxiao Du, Huanfu Zhou, Yongping Pu, Dawei Wang. Dielectric temperature stability and energy storage performance of NBT-based lead-free ceramics for Y9P capacitors[J]. Journal of Advanced Dielectrics, 2023, 13(1): 2242007
Category: Research Articles
Received: Sep. 23, 2022
Accepted: Oct. 28, 2022
Published Online: Mar. 20, 2023
The Author Email: Dawei Wang (wangdawei102@gmail.com)