Journal of Synthetic Crystals, Volume. 54, Issue 1, 139(2025)

Preparation and Energy Storage Performance of KNN-CZ Relaxation Ferroelectric Ceramics

PANG Guowang1, ZHANG Pan1, YIN Wei2, YANG Yahong1, MA Yabin1, YANG Feiyu1, MA Junliang1, WANG Ping1, QIN Yanjun1、*, and LI Ping1
Author Affiliations
  • 1College of Science, Xinjiang Institute of Technology, Aksu 843100, China
  • 2School of Electrical and Mechanical Engineering, Xinjiang Institute of Technology, Aksu 843100, China
  • show less
    References(28)

    [1] [1] GOMASU S, SAHA S, GHOSH S, et al. High energy density achieved in novel lead-free BiFeO3-CaTiO3 ferroelectric ceramics for high-temperature energy storage applications[J]. ACS Applied Materials & Interfaces, 2024, 16(3): 3654-3664.

    [2] [2] XIANG L, YUAN H L, YANG F, et al. Lowered ferromagnetic resonance linewidth and enhanced spin wave linewidth of nickel-based ferrite ceramics using hot-pressing method[J]. Ceramics International, 2024, 50(5): 8277-8283.

    [3] [3] PENG X W, YANG B, DENG D J, et al. Lead-free KNN-based ceramics incorporated with Bi(Zn2/3Nb1/3)O3 possessing excellent optical transmittance and superior energy storage density[J]. Materials Research Bulletin, 2023, 165: 112294.

    [5] [5] MA Y M, YANG S X, ZHAO C L, et al. Photochromic and electric field-regulating luminescence in high-transparent (K, Na)NbO3-based ferroelectric ceramics with two-phase coexistence[J]. ACS Applied Materials & Interfaces, 2022, 14(31): 35940-35948.

    [6] [6] ZHANG M, YANG H B, YU Y W, et al. Energy storage performance of K0.5Na0.5NbO3-based ceramics modified by Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3[J]. Chemical Engineering Journal, 2021, 425: 131465.

    [7] [7] AN Z X, YAO Y, WANG J, et al. Energy storage performance and piezoelectric response of silver niobate antiferroelectric thin film[J]. Ceramics International, 2024, 50(7): 12427-12433.

    [8] [8] GOYAL R K, CHANDRASEKHAR M, SAHOO S. Structural, dielectric and electrical transport properties of thermal stable (1-x)K0.5Bi0.5TiO3-xBaTiO3 ceramics[J]. Ceramics International, 2024, 50(5): 7978-7987.

    [9] [9] XIE A W, FU J, ZUO R Z, et al. Supercritical relaxor nanograined ferroelectrics for ultrahigh-energy-storage capacitors[J]. Advanced Materials, 2022, 34(34): e2204356.

    [10] [10] XIAO S B, SUI H T, WU F L, et al. Optimizing energy storage performance of 0.9(Na0.5Bi0.5)(Fe0.02Ti0.98)O3-0.1SrTiO3 flexible capacitor via relaxation strategy[J]. Ceramics International, 2024, 50(5): 7713-7722.

    [11] [11] WANG W, ZHANG L Y, LI C, et al. Effective strategy to improve energy storage properties in lead-free (Ba0.8Sr0.2)TiO3-Bi(Mg0.5Zr0.5)O3 relaxor ferroelectric ceramics[J]. Chemical Engineering Journal, 2022, 446: 137389.

    [12] [12] WANG M Q, LIN Y, YUAN Q B, et al. Significantly improved energy storage performances of K0.5Na0.5NbO3 lead-free ceramics via a composition optimization strategy[J]. Inorganic Chemistry Frontiers, 2023, 10(15): 4578-4586.

    [13] [13] XIAO W R, LIU Z, ZHANG C, et al. Free energy regulation and domain engineering of BaTiO3-NaNbO3 ceramics for superior dielectric energy storage performance[J]. Chemical Engineering Journal, 2023, 461: 142070.

    [15] [15] DAI Z H, ZHANG F B, RAFIQ M N, et al. Design of a KNN-BZT ceramic with high energy storage properties and transmittance under low electric fields[J]. ACS Omega, 2023, 8(8): 7883-7890.

    [16] [16] LIU C X, DAI Z H, FENG Y, et al. High energy storage characteristics for Ba0.9Sr0.1TiO3 (BST) doped Na0.7Bi0.1NbO3 (NBN) ceramics[J]. Journal of Energy Storage, 2023, 73: 109044.

    [17] [17] ZHANG M, YANG H B, LIN Y, et al. Significant increase in comprehensive energy storage performance of potassium sodium niobate-based ceramics via synergistic optimization strategy[J]. Energy Storage Materials, 2022, 45: 861-868.

    [18] [18] FU H X, LI S, LIN Y C, et al. Enhancement of piezo-photocatalytic activity in perovskite (Bi0.2Na0.2Ba0.2K0.2La0.2)TiO3 oxides via high entropy induced lattice distortion and energy band reconfiguration[J]. Ceramics International, 2024, 50(6): 9159-9168.

    [19] [19] KHAN N U, YUN W S, ULLAH A, et al. Large electrostrictive response via tailoring ergodic relaxor state in Bi1/2Na1/2TiO3- based ceramics with Bi(Mn1/2Ce1/2)O3 end-member[J]. Ceramics International, 2024, 50(6): 8790-8799.

    [20] [20] LU J X, YAO Z H, HAO H, et al. Antiferroelectric ceramic capacitors with high energy-storage densities and reduced sintering temperature[J]. Ceramics International, 2024, 50(1): 1941-1946.

    [21] [21] LI W Q, WANG S B, LIN C L, et al. Enhanced energy-storage density in (Pb0.98La0.02)(Zr0.45-xSn0.55Hfx)0.995O3 antiferroelectric ceramics[J]. Scripta Materialia, 2024, 242: 115959.

    [22] [22] DENG D, IRSHAD M S, KONG X, et al. Potassium sodium niobate-based transparent ceramics with high piezoelectricity and enhanced energy storage density[J]. Journal of Alloys and Compounds, 2023, 953: 170081.

    [23] [23] GAO X Y, CHENG Z X, CHEN Z B, et al. The mechanism for the enhanced piezoelectricity in multi-elements doped (K, Na)NbO3 ceramics[J]. Nature Communications, 2021, 12(1): 881.

    [24] [24] CHEN Q F, GAO T T, LANG R, et al. Achieving outstanding temperature stability in KNN-based lead-free ceramics for energy storage behavior[J]. Journal of the European Ceramic Society, 2023, 43(6): 2442-2451.

    [25] [25] DAI Z H, LI D Y, ZHOU Z J, et al. A strategy for high performance of energy storage and transparency in KNN-based ferroelectric ceramics[J]. Chemical Engineering Journal, 2022, 427: 131959.

    [26] [26] YANG T H, YE W H, LIN J W, et al. Enhanced energy storage performance in Bi(Mg1/3 Zn1/3Ta1/3)O3-doped (K1/2Na1/2)NbO3 high-entropy ceramics[J]. Ceramics International, 2023, 49(22): 36173-36180.

    [27] [27] CHAI Q Z, PENG Z H, WU D, et al. Significant improvement of comprehensive energy storage performance and transparency in Sr0.7La0.2TiO3-doped (K, Na)NbO3 lead-free ceramics[J]. Journal of Alloys and Compounds, 2023, 968: 171908.

    [28] [28] DAI Z H, WANG S B, LIU Y, et al. Energy storage performance of SrSc0.5Nb0.5O3 modified (Bi, Na)TiO3-based ceramic under low electric fields[J]. Journal of the American Ceramic Society, 2023, 106(4): 2366-2374.

    [31] [31] ZHU W, SHEN Z Y, DENG W, et al. A review: (Bi, Na)TiO3 (BNT)-based energy storage ceramics[J]. Journal of Materiomics, 2024, 10(1): 86-123.

    [32] [32] NING Y T, PU Y P, WU C H, et al. Design strategy of high-entropy perovskite energy-storage ceramics: a review[J]. Journal of the European Ceramic Society, 2024, 44(8): 4831-4843.

    Tools

    Get Citation

    Copy Citation Text

    PANG Guowang, ZHANG Pan, YIN Wei, YANG Yahong, MA Yabin, YANG Feiyu, MA Junliang, WANG Ping, QIN Yanjun, LI Ping. Preparation and Energy Storage Performance of KNN-CZ Relaxation Ferroelectric Ceramics[J]. Journal of Synthetic Crystals, 2025, 54(1): 139

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 9, 2024

    Accepted: Feb. 18, 2025

    Published Online: Feb. 18, 2025

    The Author Email: Yanjun QIN (565316245@qq.com)

    DOI:10.16553/j.cnki.issn1000-985x.2024.0201

    Topics