Chinese Journal of Lasers, Volume. 50, Issue 19, 1901008(2023)
Vertical-Cavity-Surface-Emitting Laser with High Power in Eye-Safe Band
[1] Seurin J F, Zhou D L, Xu G Y et al. High-efficiency VCSEL arrays for illumination and sensing in consumer applications[J]. Proceedings of SPIE, 9766, 97660D(2016).
[2] Zhou D L, Seurin J F, Xu G Y et al. Progress in high-power high-brightness VCSELs and their applications[J]. Proceedings of SPIE, 9381, 93810B(2015).
[3] Zhang J W, Ning Y Q, Zhang X et al. A high-peak-power vertical-cavity surface-emitting laser quasi-array was realized using optimized large-aperture single emitters[J]. Japanese Journal of Applied Physics, 53, 070303(2014).
[4] Li N, X, Ho C, Xue J et al. Progress review on solid-state LiDAR and nanophotonics-based LiDAR sensors[J]. Laser & Photonics Review, 16, 2100511(2022).
[5] Kostamovaara J, Huikari J, al LHallmanet. Laser ranging is based on high-speed/energy laser diode pulses and single-photon detection techniques[J]. IEEE Photonics Journal, 7, 7800215(2015).
[6] Li X P, Zhang X D, Yang J et al. Wavelength-stable 1.1-kW diode laser array cooled by liquid metal[J]. IEEE Photonics Technology Letters, 32, 434-437(2020).
[7] Hassan A M A, Gu X D, Nakahama M et al. High-power operation of single-mode surface-grating long-oxide aperture VCSELs[J]. Applied Physics Letters, 119, 191103(2021).
[8] Zhou D L, Seurin J F, Xu G Y et al. Progress in vertical-cavity surface-emitting laser arrays for infrared illumination applications[J]. Proceedings of SPIE, 9001, 90010E(2014).
[9] Soltani M D, Sarbazi E, Bamiedakis N et al. Safety analysis for laser-based optical wireless communications: a tutorial[J]. Proceedings of the IEEE, 110, 1045-1072(2022).
[10] Dummer M, Johnson K, al SRothwellet. Role of VCSELs in 3D sensing and LiDAR[J]. Proceedings of SPIE, 11692, 116920C(2021).
[11] Ziegler M, Tomm J W, Reeber D et al. Catastrophic optical mirror damage in diode lasers monitored during single-pulse operation[J]. Applied Physics Letters, 94, 191101(2009).
[12] Zhao Z G, Duan K L, Lue B D. Non-equiphase Hermite-Gaussian model of diode laser beams[J]. Optik, 119, 167-170(2008).
[13] Zhang J W, Zhang X, Zhou Y L et al. 1550-nm vertical-cavity surface-emitting laser with single-mode power of milliwatts[J]. Acta Physica Sinica, 71, 064204(2022).
[14] Mereuta A, Nechay K et al. Flip-chip wafer-fused OP-VECSELs emitting 3.65 W in the 1.55-μm waveband[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1700605(2019).
[15] Boehm G, Ortsiefer M, Shau R et al. InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0 μm[J]. Journal of Crystal Growth, 251, 748-753(2003).
[16] Blokhin S A, Nevedomsky S N, Bobrov M A et al. 1.55-μm-range vertical-cavity surface-emitting lasers, manufactured by wafer fusion of heterostructures grown by solid-source molecular-beam epitaxy[J]. Semiconductors, 54, 1276-1283(2020).
[17] Muller M, Hofmann W, al GBohmet. Short-cavity long-wavelength VCSELs with modulation bandwidths exceeding 15 GHz[J]. IEEE Photonics Technology Letters, 21, 1615-1617(2009).
[18] Syrbu A, Mircea A, Mereuta A et al. 1.5-mW single-mode operation of wafer-fused 1550-nm VCSELs[J]. IEEE Photonics Technology Letters, 16, 1230-1232(2004).
[19] Müller M, Hofmann W, Grundl T et al. 1550-nm high-speed short-cavity VCSELs[J]. IEEE Journal of Selected Topics in Quantum Electronics, 17, 1158-1166(2011).
[20] Hofmann W, Müller M, Wolf P et al. 40 Gbit/s modulation of 1550 nm VCSEL[J]. Electronics Letters, 47, 270-271(2011).
[21] Caliman A, Mereuta A, Suruceanu G et al. 8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band[J]. Optics Express, 19, 16996-17001(2011).
[22] Rao Y, Yang W J, Chase C et al. Long-wavelength VCSEL using a high-contrast grating[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1701311(2013).
[23] Kyriakis-Bizaros E D, Halkias G. Thermal resistance evaluation of high-speed VCSELs: an isothermal optical transient technique[J]. IEEE Photonics Technology Letters, 14, 269-271(2002).
[24] Miyamoto T, Nishina T, al YKashiharaet. Thermal resistance reduction of vertical-cavity surface-emitting lasers using thickness-modulated distributed Bragg reflector[J]. Japanese Journal of Applied Physics, 47, 6772-6776(2008).
[25] Wang J L, Xu X B, Wu J L et al. Echo characteristics of multiplane target detection using pulsed lasers[J]. Chinese Journal of Lasers, 49, 0604004(2022).
[26] Hu J, Liu H, Xu W C et al. Position detection algorithm for road obstacles based on 3D LiDAR[J]. Chinese Journal of Lasers, 48, 2410001(2021).
[27] Liu F H, He Y, Luo Y et al. Moving target distance and velocity measurement system based on photo-counting lidar[J]. Chinese Journal of Lasers, 48, 1310001(2021).
Get Citation
Copy Citation Text
Xing Zhang, Jianwei Zhang, Yongqiang Ning, Lijun Wang. Vertical-Cavity-Surface-Emitting Laser with High Power in Eye-Safe Band[J]. Chinese Journal of Lasers, 2023, 50(19): 1901008
Category: laser devices and laser physics
Received: Nov. 7, 2022
Accepted: Dec. 16, 2022
Published Online: Sep. 25, 2023
The Author Email: Zhang Jianwei (zjw1985@ciomp.ac.cn)