Acta Optica Sinica, Volume. 37, Issue 2, 206002(2017)
Optical Pulse Propagation Under Influence of Fifth-Order Nonlinear Kerr Effect
[1] [1] Gerd K. Optical fiber communications[M]. New York: Academic Press, 1985.
[2] [2] Miya T, Terunuma Y, Hosaka T, et al. Ultimate low-loss single-mode fiber at 1.5 μm[J]. Electron Lett, 1979, 15(4): 106-108.
[3] [3] Haus H A, Wong W S. Solitons in optical communication[M]. New York: Oxford University Press, 1995.
[4] [4] Agrawal G P. Nonlinear fiber optics[M]. New York: Academic Press, 1995.
[5] [5] Zhang Jiefang, Zhao Bi, Hu Wencheng, et al. Interaction propagation of optical vortex soliton in inhomogeneous nonlinear waveguides[J]. Acta Optica Sinica, 2013, 33(4): 0419001.
[7] [7] Wu Kan, Chen Ying, Chen Xiangning, et al. Investigation on high-bit all optical quantization based on soliton self-frequency shift effect[J]. Acta Optica Sinica, 2015, 35(3): 0319004.
[8] [8] Dong G J, Liu Z Z. Soliton resulting from the combined effect of higher order dispersion, self-steepening and nonlinearity in an optical fiber[J]. Opt Commun, 1996, 128(1): 8-14.
[9] [9] Gedalin M, Scott T C, Band Y B. Optical solitary waves in the higher order nonlinear Schrdinger equation[J]. Phys Rev Lett, 1996, 78(3): 448-451.
[10] [10] Triki H, Taha T R. Solitary wave solutions for a higher order nonlinear Schrdinger equation[J]. Mathematics and Computers in Simulation, 2012, 82(7): 1333-1340.
[11] [11] Panoiu N C, Mihalache D, Mazilu D, et al. Dynamics of dual-frequency solitons under the influence of frequency-sliding filters, third-order dispersion, and intrapulse Raman scattering[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5): 885-892.
[13] [13] Wang J F, Li L, Li Z H, et al. Generation, compression and propagation of pulse trains under higher-order effects[J]. Opt Commun, 2006, 263(2): 328-336.
[14] [14] Shi X J, Lu L, Hao R Y, et al. Stability analysis and interaction of chirped femtosecond soliton-like laser pulses[J]. Opt Commun, 2004, 241(1): 185-194.
[15] [15] Desuvire E, Bayart D, Desthieux B, et al. Erbium-doped fiber amplifibers: Device and system developments[M]. New York: John Wiley & Sons, 2002.
[16] [16] Gagnon L, Belanger P A. Adiabatic amplification of optical solitons[J]. Phys Rev A, 1991, 43(11): 6187-6193.
[17] [17] Agrawal G P. Optical pulse propagation in doped fiber amplifiers[J]. Phys Rev A, 1992, 44(11): 7493-7501.
[18] [18] Mihalache D, Mazilu D. Ginzburg-Landau spatiotemporal dissipative optical solitons[J]. Romanian Reports in Physics, 2008, 60(3): 749-761.
[19] [19] Liou L W, Agrawal G P. Solitons in fiber amplifiers beyond the parabolic-gain and rate-equation approximations[J]. Opt Commun, 1996, 124(5-6): 500-504.
[20] [20] Bélanger P A, Gagnon L, Paré C. Solitary pulses in an amplified nonlinear dispersive medium[J]. Opt Lett, 1989, 14(17): 943-945.
[21] [21] Skarka V, Aleksic N B. Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations[J]. Phys Rev Lett, 2006, 96(1): 013903.
[22] [22] Sakaguchi H, Malomed B A. Instabilities and splitting of pulses in coupled Ginzburg-Landau equations[J]. Physica D, 2001, 154(3): 229-239.
[23] [23] Horikis T P. Dark soliton dynamics under the complex Ginzburg-Landau equation[J]. Chaos Solitons & Fractals, 2015(77): 94-100.
[24] [24] Fewo S I, Atangana J, Kenfack-Jiotsa A, et al. Dispersion-managed solitons in the cubic complex Ginzburg-Landau equation as perturbations of nonlinear Schrdinger equation[J]. Opt Commun, 2005, 252(1-3): 138-149.
[25] [25] Chang W K, Soto-Crespo J M, Vouzas P, et al. Extreme amplitude spikes in a laser model described by the complex Ginzburg-Landau equation[J]. Opt Lett, 2015, 40(13): 2949-2952.
[26] [26] Haus H A, Fujimoto J G, Ippen E P. Structures for additive pulse mode-locking[J]. J Opt Soc Am B, 1991, 8(10): 2068-2076.
[27] [27] Fang F, Xiao Y. Stability of chirped bright and dark soliton-like solutions of the cubic complex Ginzburg-Landau equation with variable coefficients[J]. Opt Commun, 2006, 268(2): 305-310.
[28] [28] Jiang G Y, Liu Y W. Continuous generation of dissipative spatial solitons in two-dimensional Ginzburg-Landau models with elliptical shaped potentials[J]. Chinese Optics Letters, 2015, 13(4): 72-75.
[29] [29] Crasovan L C, Malomed B A, Mihalache D. Erupting, flat-top, and composite spiral solitons in the two-dimensional Ginzburg-Landau equation[J]. Phys Lett A, 2001, 289(1-2): 59-65.
[30] [30] Xiao Y, Biswas A. Collision of optical solitons with Kerr law nonlinearity[J]. Optik, 2007, 118(5): 243-248.
[31] [31] Choudhuri A, Porsezian K. Dark-in-the-bright solitary wave solution of higher-order nonlinear Schrdinger equation with non-Kerr terms[J]. Opt Commun, 2012, 285(3): 364-367.
[33] [33] Triki H, Azzouzi F, Grelu P. Multipole solitary wave solutions of the higher-order nonlinear Schrdinger equation with quintic non-Kerr terms[J]. Opt Commun, 2013(309): 71-79.
[34] [34] He B, Yan S B, Wang J, et al. Quantum noise effects with Kerr-nonlinearity enhancement in coupled gain-loss waveguides[J]. Phys Rev A, 2015, 91(5): 053832.
[35] [35] Choudhuri A, Porsezian K. Impact of dispersion and non-Kerr nonlinearity on the modulational instability of the higher-order nonlinear Schrdinger equation[J]. Phys Rev A, 2012, 85(3): 1431-1435.
[36] [36] Chen Y F, Beckwitt K, Wise F W, et al. Measurement of fifth- and seventh-order nonlinearities of glasses[J]. J Opt Soc Am B, 2006, 23(2): 347-352.
[37] [37] Tian J P, Zhou G S. Chirped soliton-like solutions for nonlinear Schrdinger equation with variable coefficients[J]. Opt Commun, 2006, 262(2): 257-262.
Get Citation
Copy Citation Text
Xiao Yan, Guo Zedong, Zhang Jian, Zhang Lu. Optical Pulse Propagation Under Influence of Fifth-Order Nonlinear Kerr Effect[J]. Acta Optica Sinica, 2017, 37(2): 206002
Category: Fiber Optics and Optical Communications
Received: Jul. 4, 2016
Accepted: --
Published Online: Feb. 13, 2017
The Author Email: