Acta Laser Biology Sinica, Volume. 32, Issue 2, 126(2023)
An Experimental Study Based on HA Modified CoFe2O4-TiO2 Nanoparticles by Photodynamic Therapy for HL60 Cells in vitro
[1] [1] SHEN J, LU Z, WANG J, et al. Advances of nanoparticles for leukemia treatment[J]. ACS Biomaterials Science & Engineering, 2020, 6(12): 6478-6489.
[2] [2] NOROUZI M, AMERIAN M, AMERIAN M, et al. Clinical applications of nanomedicine in cancer therapy[J]. Drug Discovery Today, 2020, 25(1): 107-125.
[3] [3] WANG R, LI X, YOON J. Organelle-targeted photosensitizers for precision photodynamic therapy[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 19543-19571.
[4] [4] ZHOU Z, ZHANG L, ZHANG Z, et al. Advances in photosensitizer-related design for photodynamic therapy[J]. Asian Journal of Pharmaceutical Sciences, 2021, 16(6): 668-686.
[5] [5] MOHAMMADALIPOUR Z, RAHMATI M, KHATAEE A, et al. Differential effects of N-TiO2 nanoparticle and its photo-activated form on autophagy and necroptosis in human melanoma A375 cells[J]. Journal of Cellular Physiology, 2020, 235(11): 8246-8259.
[8] [8] KASHYAP J, ASHRAF S M, RIAZ U. Highly efficient photocatalytic degradation of amido black 10B dye using polycarbazole-decorated TiO2 nanohybrids[J]. ACS Omega, 2017, 2(11): 8354-8365.
[9] [9] WANG J, WANG G, CHENG B, et al. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation[J]. Chinese Journal of Catalysis, 2021, 42(1): 56-68.
[10] [10] JIA P Y, GUO R, PAN W, et al. The MoS2/TiO2 heterojunction composites with enhanced activity for CO2 photocatalytic reduction under visible light irradiation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570: 306-316.
[13] [13] SUN D, ZHOU J, ZHAO L, et al. Novel curcumin liposome modified with hyaluronan targeting CD44 plays an anti-leukemic role in acute myeloid leukemia in vitro and in vivo[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 16858-16869.
[14] [14] GHAFFARI S, DOUGHERTY G J, EAVES A C, et al. Altered patterns of CD44 epitope expression in human chronic and acute myeloid leukemia[J]. Leukemia, 1996, 10(11): 1773-1781.
[15] [15] PECAK A, SKALNIAK L, PELS K, et al. Anti-CD44 DNA aptamers selectively target cancer cells[J]. Nucleic Acid Therapeutics, 2020, 30(5): 289-298.
[16] [16] BARBER N, BELOV L, CHRISTOPHERSON R I. All-trans retinoic acid induces different immunophenotypic changes on human HL60 and NB4 myeloid leukaemias[J]. Leukemia research, 2008, 32(2): 315-322.
[17] [17] XU Y, YAO Y, WANG L, et al. Hyaluronic acid coated liposomes Co-delivery of natural cyclic peptide RA-XII and mitochondrial targeted photosensitizer for highly selective precise combined treatment of colon cancer[J]. International Journal of Nanomedicine, 2021, 16: 4929-4942.
[18] [18] CHO H J. Recent progresses in the development of hyaluronic acid-based nanosystems for tumor-targeted drug delivery and cancer imaging[J]. Journal of Pharmaceutical Investigation, 2020, 50(2): 115-129.
[19] [19] CHEN B, CAO J, ZHANG K, et al. Synergistic photodynamic and photothermal therapy of BODIPY-conjugated hyaluronic acid nanoparticles[J]. Journal of Biomaterials Science, Polymer Edition, 2021, 32(15): 2028-2045.
[22] [22] KESSLER A, HEDBERG J, MCCARRICK S, et al. Adsorption of horseradish peroxidase on metallic nanoparticles: effects on reactive oxygen species detection using 2', 7'-dichlorofluorescin diacetate[J]. Chemical Research in Toxicology, 2021, 34(6): 1481-1495.
[24] [24] SUN D, XU Z, WANG K, et al. Preparation and photocatalytic properties of TiO2-CoFe2O4 magnetic composite photocatalyst[J]. Advanced Materials Research, 2012, 391-392: 1488-1492.
[25] [25] HAW C, CHIU W, RAHMAN S A, et al. The design of new magnetic-photocatalyst nanocomposites (CoFe2O4-TiO2) as smart nanomaterials for recyclable-photocatalysis applications[J]. New Journal of Chemistry, 2016, 40(2): 1124-1136.
[26] [26] HUANG J, JING H, LI N, et al. Fabrication of magnetically recyclable SnO2-TiO2/CoFe2O4 hollow core-shell photocatalyst: Improving photocatalytic efficiency under visible light irradiation[J]. Journal of Solid State Chemistry, 2019, 271: 103-109.
[27] [27] BOKUNIAEVA A O, VOROKH A S. Estimation of particle size using the debye equation and the scherrer formula for polyphasic TiO2 powder[J]. Journal of Physics: Conference Series. IOP Publishing, 2019, 1410: 012057-012062.
[28] [28] KUBALA-KUKUS A, BANAS D, STABRAWA I, et al. Analysis of Ti and TiO2 nanolayers by total reflection X-ray photoelectron spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 145: 43-50.
[29] [29] LALLIMATHI M, KALISAMY P, SURYAMATHI M, et al. Carbon dot loaded integrative CoFe2O4/g-C3N4 P-N heterojunction: direct solar light-driven photocatalytic H2 evolution and organic pollutant degradation[J]. Chemistry Select, 2020, 5(34): 10607-10617.
[30] [30] LIU L, HE W, FANG Z, et al. From core-shell to yolk-shell: improved catalytic performance toward CoFe2O4@hollow@mesoporous TiO2 toward selective oxidation of styrene[J]. Industrial & Engineering Chemistry Research, 2020, 59(45): 19938-19951.
[31] [31] GHOBADIFARD M, SAFAEI E, RADOVANOVIC P V, et al. A porphyrin-conjugated TiO2/CoFe2O4 nanostructure photocatalyst for the selective production of aldehydes under visible light[J]. New Journal of Chemistry, 2021, 45(18): 8032-8044.
[32] [32] SATHISHKUMAR P, MANGALARAJA R V, ANANDAN S, et al. CoFe2O4/TiO2 nanocatalysts for the photocatalytic degradation of Reactive Red 120 in aqueous solutions in the presence and absence of electron acceptors[J]. Chemical Engineering Journal, 2013, 220: 302-310.
[33] [33] SEPHVAND S, BAHRAMI M, FALLAH N. Photocatalytic degradation of 2, 4-DNT in simulated wastewater by magnetic CoFe2O4/SiO2/TiO2 nanoparticles[J]. Environmental Science and Pollution Research, 2022, 29(5): 6479-6490.
[34] [34] IBRAHIM I, ATHANASEKOU C, MANOLIS G, et al. Photocatalysis as an advanced reduction process (ARP): the reduction of 4-nitrophenol using titania nanotubes-ferrite nanocomposites[J]. Journal of Hazardous Materials, 2019, 372: 37-44.
[35] [35] PASQUI D, GOLINI L, GIOVAMPAOLA C D, et al. Chemical and biological properties of polysaccharide-coated titania nanoparticles: the key role of proteins[J]. Biomacromolecules, 2011, 12(4): 1243-1249.
[36] [36] MANJU S, SREENIVASAN K. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability[J]. Journal of Colloid and Interface Science, 2011, 359(1): 318-325.
[37] [37] GAN W, LIU Y, GAO L, et al. Growth of CoFe2O4 particles on wood template using controlled hydrothermal method at low temperature[J]. Ceramics International, 2015, 41(10): 14876-14885.
[38] [38] KARBOWNIK M S, NOWAK J Z. Hyaluronan: towards novel anti-cancer therapeutics[J]. Pharmacological Reports, 2013, 65(5): 1056-1074.
[39] [39] LI H, LEE H Y, PARK G S, et al. Conjugated polyene-functionalized graphitic carbon nitride with enhanced photocatalytic water-splitting efficiency[J]. Carbon, 2018, 129: 637-645.
[40] [40] PHAM T C, NGUYEN V N, CHOI Y, et al. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy[J]. Chemical Reviews, 2021, 121(21): 13454-13619.
[41] [41] ZHONG Y, MENG F, DENG C, et al. Targeted inhibition of human hematological cancers in vivo by doxorubicin encapsulated in smart lipoic acid-crosslinked hyaluronic acid nanoparticles[J]. Drug Delivery, 2017, 24(1): 1482-1490.
[42] [42] CHEN M, XU Y. Trace amount CoFe2O4 anchored on a TiO2 photocatalyst efficiently catalyzing O2 reduction and phenol oxidation[J]. Langmuir, 2019, 35(29): 9334-9342.
Get Citation
Copy Citation Text
PAN Qilin, LI Miaomiao, XIAO Mucang, AI Baoquan, XIONG Jianwen. An Experimental Study Based on HA Modified CoFe2O4-TiO2 Nanoparticles by Photodynamic Therapy for HL60 Cells in vitro[J]. Acta Laser Biology Sinica, 2023, 32(2): 126
Received: Jan. 9, 2023
Accepted: --
Published Online: Jan. 27, 2024
The Author Email: