Oncoradiology, Volume. 34, Issue 3, 216(2025)

Value of deep learning ultrasound radiomics in predicting axillary lymph node metastasis of breast cancer

HU Jiaojiao1,2, FU Xiaohong2, SHEN Yan2, YU Xiaoqing2, CHEN Qingqing2, and HU Su1,3、*
Author Affiliations
  • 1Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
  • 2Department of Ultrasound, Gongli Hospital, Shanghai Pudong New Area, Shanghai 200135, China
  • 3Institute of Medical Imaging, Soochow University, Suzhou 215006, Jiangsu Province, China
  • show less
    References(15)

    [1] [1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.

    [2] [2] ALLEMANI C, MATSUDA T, DI CARLO V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries[J]. Lancet, 2018, 391(10125): 1023-1075.

    [3] [3] CHANG J M, LEUNG J W T, MOY L, et al. Axillary nodal evaluation in breast cancer: state of the art[J]. Radiology, 2020, 295(3): 500-515.

    [4] [4] LYMAN G H, TEMIN S, EDGE S B, et al. Sentinel lymph node biopsy for patients with early-stage breast cancer: American Society of Clinical Oncology clinical practice guideline update[J]. J Clin Oncol, 2014, 32(13): 1365-1383.

    [5] [5] KANN B H, HOSNY A, AERTS H J W L. Artificial intelligence for clinical oncology[J]. Cancer Cell, 2021, 39(7): 916-927.

    [6] [6] SPUHLER K D, DING J, LIU C L, et al. Task-based assessment of a convolutional neural network for segmenting breast lesions for radiomic analysis[J]. Magn Reson Med, 2019, 82(2): 786-795.

    [7] [7] SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17-48.

    [8] [8] WANG S Q, WANG D M, WEN X, et al. Construction and validation of a nomogram prediction model for axillary lymph node metastasis of cT1 invasive breast cancer[J]. Eur J Cancer Prev, 2024, 33(4): 309-320.

    [9] [9] TAHMASEBI A, QU E Z, SEVRUKOV A, et al. Assessment of axillary lymph nodes for metastasis on ultrasound using artificial intelligence[J]. Ultrason Imaging, 2021, 43(6): 329-336.

    [10] [10] SALEH G A, BATOUTY N M, GAMAL A, et al. Impact of imaging biomarkers and AI on breast cancer management: a brief review[J]. Cancers (Basel), 2023, 15(21): 5216.

    [12] [12] ZHANG H, SUI X F, ZHOU S Z, et al. Correlation of conventional ultrasound characteristics of breast tumors with axillary lymph node metastasis and Ki-67 expression in patients with breast cancer[J]. J Ultrasound Med, 2019, 38(7): 1833-1840.

    [14] [14] DURMUS T, STCKEL J, SLOWINSKI T, et al. The hyperechoic zone around breast lesions - an indirect parameter of malignancy[J]. Ultraschall Med, 2014, 35(6): 547-553.

    [16] [16] ERICKSON B J. Basic artificial intelligence techniques: Machine learning and deep learning[J]. Radiol Clin North Am, 2021, 59(6): 933-940.

    [17] [17] ZHOU L Q, WU X L, HUANG S Y, et al. Lymph node metastasis prediction from primary breast cancer US images using deep learning[J]. Radiology, 2020, 294(1): 19-28.

    [18] [18] ZHENG X Y, YAO Z, HUANG Y N, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer[J]. Nat Commun, 2020, 11(1): 1236.

    Tools

    Get Citation

    Copy Citation Text

    HU Jiaojiao, FU Xiaohong, SHEN Yan, YU Xiaoqing, CHEN Qingqing, HU Su. Value of deep learning ultrasound radiomics in predicting axillary lymph node metastasis of breast cancer[J]. Oncoradiology, 2025, 34(3): 216

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 3, 2025

    Accepted: Aug. 22, 2025

    Published Online: Aug. 22, 2025

    The Author Email: HU Su (husu@suda.edu.cn)

    DOI:10.19732/j.cnki.2096-6210.2025.03.003

    Topics