Oncoradiology, Volume. 34, Issue 3, 216(2025)
Value of deep learning ultrasound radiomics in predicting axillary lymph node metastasis of breast cancer
[1] [1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2] [2] ALLEMANI C, MATSUDA T, DI CARLO V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries[J]. Lancet, 2018, 391(10125): 1023-1075.
[3] [3] CHANG J M, LEUNG J W T, MOY L, et al. Axillary nodal evaluation in breast cancer: state of the art[J]. Radiology, 2020, 295(3): 500-515.
[4] [4] LYMAN G H, TEMIN S, EDGE S B, et al. Sentinel lymph node biopsy for patients with early-stage breast cancer: American Society of Clinical Oncology clinical practice guideline update[J]. J Clin Oncol, 2014, 32(13): 1365-1383.
[5] [5] KANN B H, HOSNY A, AERTS H J W L. Artificial intelligence for clinical oncology[J]. Cancer Cell, 2021, 39(7): 916-927.
[6] [6] SPUHLER K D, DING J, LIU C L, et al. Task-based assessment of a convolutional neural network for segmenting breast lesions for radiomic analysis[J]. Magn Reson Med, 2019, 82(2): 786-795.
[7] [7] SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17-48.
[8] [8] WANG S Q, WANG D M, WEN X, et al. Construction and validation of a nomogram prediction model for axillary lymph node metastasis of cT1 invasive breast cancer[J]. Eur J Cancer Prev, 2024, 33(4): 309-320.
[9] [9] TAHMASEBI A, QU E Z, SEVRUKOV A, et al. Assessment of axillary lymph nodes for metastasis on ultrasound using artificial intelligence[J]. Ultrason Imaging, 2021, 43(6): 329-336.
[10] [10] SALEH G A, BATOUTY N M, GAMAL A, et al. Impact of imaging biomarkers and AI on breast cancer management: a brief review[J]. Cancers (Basel), 2023, 15(21): 5216.
[12] [12] ZHANG H, SUI X F, ZHOU S Z, et al. Correlation of conventional ultrasound characteristics of breast tumors with axillary lymph node metastasis and Ki-67 expression in patients with breast cancer[J]. J Ultrasound Med, 2019, 38(7): 1833-1840.
[14] [14] DURMUS T, STCKEL J, SLOWINSKI T, et al. The hyperechoic zone around breast lesions - an indirect parameter of malignancy[J]. Ultraschall Med, 2014, 35(6): 547-553.
[16] [16] ERICKSON B J. Basic artificial intelligence techniques: Machine learning and deep learning[J]. Radiol Clin North Am, 2021, 59(6): 933-940.
[17] [17] ZHOU L Q, WU X L, HUANG S Y, et al. Lymph node metastasis prediction from primary breast cancer US images using deep learning[J]. Radiology, 2020, 294(1): 19-28.
[18] [18] ZHENG X Y, YAO Z, HUANG Y N, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer[J]. Nat Commun, 2020, 11(1): 1236.
Get Citation
Copy Citation Text
HU Jiaojiao, FU Xiaohong, SHEN Yan, YU Xiaoqing, CHEN Qingqing, HU Su. Value of deep learning ultrasound radiomics in predicting axillary lymph node metastasis of breast cancer[J]. Oncoradiology, 2025, 34(3): 216
Category:
Received: Mar. 3, 2025
Accepted: Aug. 22, 2025
Published Online: Aug. 22, 2025
The Author Email: HU Su (husu@suda.edu.cn)