Infrared Technology, Volume. 42, Issue 9, 873(2020)
Improved Super-resolution Reconstruction of Infrared Images Based on Deep Back-projection Networks
[1] [1] DONG W, SHI G, LI X, et al. Image reconstruction with locally adaptive sparsity and nonlocal robust regularization[J]. Image Communication, 2012, 27(10): 1109-1122.
DONG W, SHI G, LI X, et al. Image reconstruction with locally adaptive sparsity and nonlocal robust regularization[J]. Image Communication, 2012, 27(10): 1109-1122.
[2] [2] YANG H, HUANG Z. Fast image interpolation algorithm based on gradient[J]. Journal of Computer Applications, 2013, 32(10): 2821-2823.
YANG H, HUANG Z. Fast image interpolation algorithm based on gradient[J]. Journal of Computer Applications, 2013, 32(10): 2821-2823.
[3] [3] Papyan V, Elad M. Multi-Scale Patch-Based Image Restoration[J]. IEEE Transactions on Image Processing, 2015, 25: 249-261.
Papyan V, Elad M. Multi-Scale Patch-Based Image Restoration[J]. IEEE Transactions on Image Processing, 2015, 25: 249-261.
[5] [5] DONG C , LOY C C , HE K , et al. Image Super-Resolution Using Deep Convolutional Networks[J]. IEEE Trans Pattern Anal Mach Intell, 2016,38(2): 295-307.
DONG C , LOY C C , HE K , et al. Image Super-Resolution Using Deep Convolutional Networks[J]. IEEE Trans Pattern Anal Mach Intell, 2016,38(2): 295-307.
[6] [6] DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//European Conference on Computer Vision, 2016: 391-407.
DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//European Conference on Computer Vision, 2016: 391-407.
[7] [7] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1646-1654.
KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1646-1654.
[8] [8] Haris M, Shakhnarovich G, Ukita N. Deep Back-Projection Networks for Super-Resolution[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 1664-1673.
Haris M, Shakhnarovich G, Ukita N. Deep Back-Projection Networks for Super-Resolution[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 1664-1673.
[9] [9] SOCARRAS Y, RAMOS S, VAZQUEZ D, et al. Adapting Pedestrian Detection from Synthetic to Far Infrared Images[C]//ICCV – Workshop on Visual Domain Adaptation and Dataset Bias, 2013: 1-3.
SOCARRAS Y, RAMOS S, VAZQUEZ D, et al. Adapting Pedestrian Detection from Synthetic to Far Infrared Images[C]//ICCV – Workshop on Visual Domain Adaptation and Dataset Bias, 2013: 1-3.
[10] [10] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[11] [11] ZHANG L , WU X. An edge-guided image interpolation algorithm via directional filtering and data fusion[J]. IEEE Trans Image Process, 2006, 15(8): 2226-2238.
ZHANG L , WU X. An edge-guided image interpolation algorithm via directional filtering and data fusion[J]. IEEE Trans Image Process, 2006, 15(8): 2226-2238.
Get Citation
Copy Citation Text
LIN Renpu, ZHANG Li, MA Chenhui, LIU Xuan, ZHANG Hao. Improved Super-resolution Reconstruction of Infrared Images Based on Deep Back-projection Networks[J]. Infrared Technology, 2020, 42(9): 873
Category:
Received: Jun. 15, 2020
Accepted: --
Published Online: Oct. 27, 2020
The Author Email: Renpu LIN (18752659887@163.com)
CSTR:32186.14.