Laser & Optoelectronics Progress, Volume. 61, Issue 1, 0116002(2024)

Local Structure Design and Application of Rare-Earth Doped Alkaline Earth Fluorite Laser Crystal (Invited)

Liangbi Su1、†,*, Fengkai Ma1,2、†, Zhen Zhang1, Dapeng Jiang1, Zhonghan Zhang1, Huamin Kou1, Zhen Li2, Zhenqiang Chen2, and Jun Xu3
Author Affiliations
  • 1State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
  • 2Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, Guangdong , China
  • 3Institute for Advanced Study, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • show less
    Figures & Tables(21)
    Fluorite structure of MF2 crystal[26]
    Structure of rare earth clusters in fluorite crystal[26]
    Clusters and clustering features of RE3+ in MF2 crystal[26]
    Neodymium cluster structure evolution in SrF2 crystal[42]. (a) Linear combination fitting of XANES; (b) fitted structural evolution; (c) comparison of the absorption and the fitted results[42]
    Number of codopant ions dependent formation energy in SrF2 crystal[19,47]. (a) [Nd3+-La3+] clusters; (b) [Nd3+-Gd3+] clusters; (c) [Nd3+-Y3+] mixed clusters
    The [Nd3+-Y3+] mixed cluster structure evolution in SrF2 crystal[42]. (a) Linear combination fitting of XANES; (b) fitting results
    Structure and spectral properties of Yb,Na∶CaF2[57,60]. (a) Local structures of Yb ions; (b)‒(e) influence of Na+ on the transmission, absorption, emission, and decay curves of Yb∶CaF2, respectively A,B,and C represent the 2%Yb∶CaF2 codoped with 0,3%,and 20% Na ions,respectively
    Low temperature spectral properties of Yb,Na∶CaF2[60-61]. (a) Absorption spectra; (b) emission cross section; (c) gain cross section
    Laser operations realized with Yb,Na∶CaF2 crystal[60-61,66]. (a) CW laser operation at room temperature; (b)(c) temperature dependent slope efficiency and threshold, respectively; (d) CPA femtosecond laser; (e) 1 TW femtosecond pulse laser realized in POLARIS
    Absorption and emission spectra of NYSF crystal[19]. (a) Concentration of Nd3+ dependent peak absorption cross section; (b) normalized emission intensity at 1057 nm; (c) concentration of Y3+ dependent peak absorption cross section; (d) emission spectra
    Absorption and emission spectra of NRCF and NRSF crystals[72]. (a)(b) Absorption and emission spectra of NRSF; (c) emission spectra of NRSF and NRCF (cubic and square antiprism represent the second stage and third stage of cubic and square antiprism clusters, respectively, the red arrows denote the movement directions of anions in the first shell of rare earth ions)
    Continuously tunable photoluminescence parameters of NRSF and NRCF crystal[42]. (a) Emission cross section and bandwidth; (b) fluorescence lifetime and emission wavelength
    Mode-locked pulses with NYCF and NYSF crystal. (a) (b) Autocorrelation trace and spectrum of the mode-locked pulses in NYCF[23]; (c) (d) autocorrelation trace and spectrum of the mode-locked pulses in NYSF[22]
    CPA-based repetitive pulse amplification in NYSF crystal[24]
    Comparison of the emission spectra of crystals codoped with one and two kinds of regulators[105]. (a) Crystals doped with Y3+/La3+; (b) Y3+/Gd3+; (c) Lu3+/La3+; (d)Lu3+/Gd3+
    Cluster structure and the energy transfer processes[108]. (a) Aggregating of rare earth in CaF2/SrF2; (b)(c) energy transfer processes among the Tm3+ and among the Er3+ ions, respectively
    Emission spectra and laser performances of Tm∶CaF2 crystal[110-111]. (a) Normalized emission spectra; (b)(c) continuous and widely tuned laser output curves of crystals
    Laser operation realized in Er-doped fluorite crystals[119,122]. (a) CW; (b) tunable laser; (c) (d) self Q-switched and Q-switched mode locked lasers
    • Table 1. Spectra and laser performance of Nd3+-doped laser materials

      View table

      Table 1. Spectra and laser performance of Nd3+-doped laser materials

      Laser materialEmission cross section /(10-20 cm2FWHM /nmLifetime /μsThermal conductivity@300 K /[W/(m·K)]CW efficiency /%Average output power /WUltrafast laser
      Nd∶YAG65790.8782407713.08776.9(885 nm pumped)8324.6×103[881.7 ps89
      Nd∶YVO4

      135(π)

      65(σ

      1.5(π)

      3(σ

      91

      5.1(a-axis)74

      5.23(c-axis)

      82.7(879 nm pumped)84108902.1 ps91
      Nd∶YLF

      18(1047 nm)

      12(1053 nm)

      1.3580480756>63.5851120922.8 ps93
      Nd∶CYA

      10.4(π)

      7.5(σ

      15(π)

      12(σ)

      12978~ 394

      22(π)95

      31(σ)

      0.375587 fs96
      Nd∶CNGG~515160973.49844.5990.06534 fs100
      NYSF5203602.443.50.10297 fs22
      NLSF2848050.60.50156 fs101
      NYCF303612.9391020.089103 fs23
      Nd∶Ca3La2(BO3427761.112.41030.02879 fs86
      N31 glass3.825.83510.5669320.13139 fs104
    • Table 2. Comparison of the CW laser performances of Tm3+-doped laser crystal[111-115]

      View table

      Table 2. Comparison of the CW laser performances of Tm3+-doped laser crystal[111-115]

      CrystalOutput power /WCW efficiency /%Quantum efficiency
      Tm∶BYF0.6337.60.93
      Tm∶YAG10046.31.20
      Tm∶YAP31563.8
      Tm∶YLF70.870
      Tm∶LiGdF40.2153.01.35
      Tm∶GSAO3.8953.41.31
      Tm∶LuYAG3.7054.61.39
      Tm∶LLF0.2956.01.43
      Tm,La∶CaF24.2767.81.64
      Tm∶SrF24.0881.8~2.00
    • Table 3. Comparison of the CW laser performances of Er3+-doped laser crystal[118,120-121,124-128]

      View table

      Table 3. Comparison of the CW laser performances of Er3+-doped laser crystal[118,120-121,124-128]

      CrystalDoping atomic fraction /%Output power /WCW efficiency /%
      Er∶YAG501.50
      Er∶LiYF4151.1035
      Er∶LiYF4150.0450
      Er∶Lu2O375.9027
      Er∶YSGG381.8411.2
      Er∶YSGG3534.9*13.7
      Er∶YAP56.9033
      Er∶YGG101.3835.4
      Er∶SrF231.0641
      Er∶CaF21.72.3221.2
      Er∶CaF20.30.1421.4
    Tools

    Get Citation

    Copy Citation Text

    Liangbi Su, Fengkai Ma, Zhen Zhang, Dapeng Jiang, Zhonghan Zhang, Huamin Kou, Zhen Li, Zhenqiang Chen, Jun Xu. Local Structure Design and Application of Rare-Earth Doped Alkaline Earth Fluorite Laser Crystal (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0116002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: May. 24, 2023

    Accepted: Sep. 18, 2023

    Published Online: Feb. 6, 2024

    The Author Email: Liangbi Su (suliangbi@mail.sic.ac.cn)

    DOI:10.3788/LOP231362

    CSTR:32186.14.LOP231362

    Topics