Chinese Journal of Quantum Electronics, Volume. 41, Issue 6, 914(2024)

Perfect optomechanically induced transparency in Bose⁃Einstein condensate cavity

XIA Changchao and SONG Liwei*
Author Affiliations
  • School of Physics and Electronic Engineering, Northeast Petroleum University, Daqing 163318, China
  • show less
    References(43)

    [1] Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics[J]. Reviews of Modern Physics, 86, 1391-1452(2014).

    [2] Kippenberg T J, Vahala K J. Cavity optomechanics: Back-action at the mesoscale[J]. Science, 321, 1172-1176(2008).

    [3] Marquardt F, Girvin S. Optomechanics[J]. Physics, 2, 40(2009).

    [4] Arcizet O, Cohadon P F, Briant T et al. Radiation-pressure cooling and optomechanical instability of a micromirror[J]. Nature, 444, 71-74(2006).

    [5] Kippenberg T J, Rokhsari H, Carmon T et al. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity[J]. Physical Review Letters, 95, 033901(2005).

    [6] Jiang X S, Lin Q, Rosenberg J et al. High-Q double-disk microcavities for cavity optomechanics[J]. Optics Express, 17, 20911-20919(2009).

    [7] Thompson J D, Zwickl B M, Jayich A M et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane[J]. Nature, 452, 72-75(2008).

    [8] Sankey J C, Yang C, Zwickl B M et al. Strong and tunable nonlinear optomechanical coupling in a low-loss system[J]. Nature Physics, 6, 707-712(2010).

    [9] Teufel J D, Li D L, Allman M S et al. Circuit cavity electromechanics in the strong-coupling regime[J]. Nature, 471, 204-208(2011).

    [10] Chen B, Jiang C, Zhu K D. Slow light in a cavity optomechanical system with a Bose-Einstein condensate[J]. Physical Review A, 83, 055803(2011).

    [11] Marquardt F, Chen J P, Clerk A A et al. Quantum theory of cavity-assisted sideband cooling of mechanical motion[J]. Physical Review Letters, 99, 093902(2007).

    [12] He B, Yang L, Lin Q et al. Radiation pressure cooling as a quantum dynamical process[J]. Physical Review Letters, 118, 233604(2017).

    [13] Yan X B, Deng Z J, Tian X D et al. Entanglement optimization of filtered output fields in cavity optomechanics[J]. Optics Express, 27, 24393-24402(2019).

    [14] Deng Z J, Yan X B, Wang Y D et al. Optimizing the output-photon entanglement in multimode optomechanical systems[J]. Physical Review A, 93, 033842(2016).

    [15] Ren X X, Li H K, Yan M Y et al. Single-photon transport and mechanical NOON-state generation in microcavity optomechanics[J]. Physical Review A, 87, 033807(2013).

    [16] He B, Yang L, Jiang X S et al. Transmission nonreciprocity in a mutually coupled circulating structure[J]. Physical Review Letters, 120, 203904(2018).

    [17] Wang J. Optical nonreciprocity in two-cavity optomechanical system[J]. Chinese Journal of Quantum Electronics, 37, 328-336(2020).

    [18] Xia C C, Yan X B, Tian X D et al. Ideal optical isolator with a two-cavity optomechanical system[J]. Optics Communications, 451, 197-201(2019).

    [19] Agarwal G S, Huang S M. Electromagnetically induced transparency in mechanical effects of light[J]. Physical Review A, 81, 041803(2010).

    [20] Weis S, Rivière R, Deléglise S et al. Optomechanically induced transparency[J]. Science, 330, 1520-1523(2010).

    [21] Safavi-Naeini A H, Mayer Alegre T P, Chan J et al. Electromagnetically induced transparency and slow light with optomechanics[J]. Nature, 472, 69-73(2011).

    [22] Liu Y C, Li B B, Xiao Y F. Electromagnetically induced transparency in optical microcavities[J]. Nanophotonics, 6, 789-811(2017).

    [23] Huang S M, Agarwal G S. Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes[J]. Physical Review A, 83, 023823(2011).

    [24] Lü H, Wang C Q, Yang L et al. Optomechanically induced transparency at exceptional points[J]. Physical Review Applied, 10, 014006(2018).

    [25] Dong C H, Fiore V, Kuzyk M C et al. Transient optomechanically induced transparency in a silica microsphere[J]. Physical Review A, 87, 055802(2013).

    [26] Xiong H, Si L G, Zheng A S et al. Higher-order sidebands in optomechanically induced transparency[J]. Physical Review A, 86, 013815(2012).

    [27] Ma P C, Zhang J Q, Xiao Y et al. Tunable double optomechanically induced transparency in an optomechanical system[J]. Physical Review A, 90, 043825(2014).

    [28] Yan X B. Optomechanically induced ultraslow and ultrafast light[J]. Physica E: Low-Dimensional Systems and Nanostructures, 131, 114759(2021).

    [29] Qian L B, Yan X B. Perfect optomechanically induced transparency in two-cavity optomechanics[J]. Frontiers of Physics, 18, 52301(2023).

    [30] Kronwald A, Marquardt F. Optomechanically induced transparency in the nonlinear quantum regime[J]. Physical Review Letters, 111, 133601(2013).

    [31] Yan X B. Optomechanically induced transparency and gain[J]. Physical Review A, 101, 043820(2020).

    [32] Yan X B. Optomechanically induced optical responses with non-rotating wave approximation[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 54, 035401(2021).

    [33] Chang D E, Safavi-Naeini A H, Hafezi M et al. Slowing and stopping light using an optomechanical crystal array[J]. New Journal of Physics, 13, 023003(2011).

    [34] Tarhan D, Huang S M, Müstecaplıoğlu Ö E. Superluminal and ultraslow light propagation in optomechanical systems[J]. Physical Review A, 87, 013824(2013).

    [35] Akram M J, Khan M M, Saif F. Tunable fast and slow light in a hybrid optomechanical system[J]. Physical Review A, 92, 023846(2015).

    [36] Gu K H, Yan X B, Zhang Y et al. Tunable slow and fast light in an atom-assisted optomechanical system[J]. Optics Communications, 338, 569-573(2015).

    [37] Liao Q H, Xiao X, Nie W J et al. Transparency and tunable slow-fast light in a hybrid cavity optomechanical system[J]. Optics Express, 28, 5288-5305(2020).

    [38] Zhao Y N, Wang T, Wang D Y et al. Optical amplification and fast-slow light in a three-mode cavity optomechanical system without rotating wave approximation[J]. Photonics, 8, 384(2021).

    [39] Mikaeili H, Dalafi A, Ghanaatshoar M et al. Ultraslow light realization using an interacting Bose-Einstein condensate trapped in a shallow optical lattice[J]. Scientific Reports, 12, 4428(2022).

    [40] Mikaeili H, Dalafi A, Ghanaatshoar M et al. Optomechanically induced gain using a trapped interacting Bose-Einstein condensate[J]. Scientific Reports, 13, 3659(2023).

    [41] Brennecke F, Ritter S, Donner T et al. Cavity optomechanics with a bose-einstein condensate[J]. Science, 322, 235-238(2008).

    [42] Chen B, Jiang C, Zhu K D. Tunable all-optical Kerr switch based on a cavity optomechanical system with a Bose-Einstein condensate[J]. Journal of the Optical Society of America B, 28, 2007(2011).

    [43] Bigelow M S, Lepeshkin N N, Boyd R W. Superluminal and slow light propagation in a room-temperature solid[J]. Science, 301, 200-202(2003).

    Tools

    Get Citation

    Copy Citation Text

    Changchao XIA, Liwei SONG. Perfect optomechanically induced transparency in Bose⁃Einstein condensate cavity[J]. Chinese Journal of Quantum Electronics, 2024, 41(6): 914

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 15, 2023

    Accepted: --

    Published Online: Jan. 8, 2025

    The Author Email: Liwei SONG (zhidao90@163.com)

    DOI:10.3969/j.issn.1007-5461.2024.06.008

    Topics