Laser & Optoelectronics Progress, Volume. 57, Issue 20, 201014(2020)

Intelligent Domestic Garbage Recognition Based on Faster RCNN

Canhua Wen, Jia Li*, and Xue Dong
Author Affiliations
  • China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
  • show less
    Figures & Tables(11)
    Experimental equipment
    Typical image samples from each class
    Network structure of Faster RCNN
    Faster RCNN train process combined with hard samples enhancement and special layer fine-tuning
    Total loss convergence and mAP of test dataset during training procedure
    Probability threshold decision curve on MobileNet_v1
    • Table 1. Object quantity on garbage dataset

      View table

      Table 1. Object quantity on garbage dataset

      DatasetMetalPlasticCartonBatteryBulbPillTotal
      Original dataset132113928071058112914027109
      Augmented train dataset24292435193823892398252814117
      Augmented test dataset6305854835976176303542
      Augmented dataset30593020242129863015315817659
    • Table 2. Number of parameters, FLOPs and layers for different networks

      View table

      Table 2. Number of parameters, FLOPs and layers for different networks

      NetworkNumber ofparameters /107Number ofFLOPs /1010Layernumbers
      VGG-16136.79166.3720
      Res10147.21167.25105
      MobileNet_v15.6119.0232
    • Table 3. Network results on train dataset (TR) and test dataset (TE)

      View table

      Table 3. Network results on train dataset (TR) and test dataset (TE)

      BackbonenetworkAPmAPOptimizedmAPDetection speed /(frame·s-1)
      MetalPlasticCartonBatteryPillBulb
      Res101TR1.00.99960.99850.99960.99731.00.99920.9993~7
      TE0.97700.95970.98170.96950.97280.98110.97360.9857
      VGG-16TR1.00.99970.99970.99960.99701.00.99930.9992~9
      TE0.97580.96390.98660.98350.98130.98530.97940.9923
      MobileNet_v1TR0.98170.97150.97320.98510.98310.98790.98040.9833~20
      TE0.91390.87370.92040.94080.96710.95540.92850.9490
    • Table 4. Test results on background dataset

      View table

      Table 4. Test results on background dataset

      Backbone networkOriginal mAPStatusmAP under different background types
      Pure colorTextureGarbage
      Res1011.0Before re-training0.99130.92220.9050
      After re-training1.01.01.0
      VGG-161.0Before re-training0.99010.88350.6494
      After re-training1.01.01.0
      MobileNet_v10.9917Before re-training0.96910.74330.4204
      After re-training0.99990.99330.9793
    • Table 5. Precision and recall on test dataset under optimal threshold of each network

      View table

      Table 5. Precision and recall on test dataset under optimal threshold of each network

      Backbone network(P1,P2)ParameterRecyclable garbageHazardous garbage
      MetalPlasticCartonMeanBatteryPillBulbMean
      Res101(0.76, 0.24)Precision0.97960.96620.98340.97640.94970.97920.96980.9662
      Recall0.98890.97780.98340.98340.97990.97140.98870.9800
      VGG-16(0.62, 0.38)Precision0.95830.94870.97750.96150.96570.96580.95340.9491
      Recall0.98570.97950.98760.98430.98990.98730.99510.9908
      MobileNet_v1(0.56, 0.44)Precision0.89430.92350.91090.90960.92660.96360.88670.9256
      Recall0.96090.93220.96540.95280.97280.97390.98540.9774
    Tools

    Get Citation

    Copy Citation Text

    Canhua Wen, Jia Li, Xue Dong. Intelligent Domestic Garbage Recognition Based on Faster RCNN[J]. Laser & Optoelectronics Progress, 2020, 57(20): 201014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jan. 13, 2020

    Accepted: Mar. 9, 2020

    Published Online: Oct. 13, 2020

    The Author Email: Jia Li (canhuamail@163.com)

    DOI:10.3788/LOP57.201014

    Topics