Piezoelectrics & Acoustooptics, Volume. 44, Issue 2, 223(2022)
Recent Advances and Prospects of Lamb Wave Devices Based on Piezo-MEMS
[1] [1] HAGELAUER A,FATTINGER G,RUPPEL C C W,et al, Microwave acoustic wave devices:recent advances on architectures,modeling,materials,and packaging[J]. IEEE Transactions on Microwave Theory and Techniques,2018,66(10):4548-4562,
[2] [2] CHAUHAN V,HUCK C,FRANK A,et al, Enhancing RF bulk acoustic wave devices[J]. IEEE Microwave Magazine,2019,20(10):56-70,
[3] [3] SU Zhongqing,YE Lin,LU Ye, Guided Lamb waves for identification of damage in composite structures:A review[J]. Journal of Sound and Vibration,2006,295:753-780,
[4] [4] YANTCHEV V,KATARDJIEV I, Thin film Lamb wave resonators in frequency control and sensing applications:A review[J],Journal of Micromechanics and Microengineering,2013,23(4):1-14,
[8] [8] PIAZZA G,COLOMBO L,KOCHHAR A,et al, X-cut lithium niobate laterally vibrating MEMS resonator with figure of merit of 1 560 [J]. Journal of Microelectromechanical Systems,2018,27(4):602-604,
[9] [9] ZHOU Hongyan,ZHANG Shibin,LI Zhongxu,et al, Surface wave and Lamb wave acoustic devices on heterogenous substrate for 5G front-ends [C]//San Francisco,USA:IEEE International Electron Devices Meeting (IEDM),2020:1-4,
[10] [10] ZHOU Hongyan,ZHANG Shibin,ZHENG Pengcheng,et al, A 6, 1 GHz wideband solidly-mounted acoustic filter on heterogeneous substrate for 5G front-ends [C]// Tokyo,Japan:IEEE 35th International Conference on Micro Electro Mechanical Systems Conference(MEMS),2022:1006-1009,
[11] [11] FAIZAN M,VILLANUEVA L G, Optimization of inactive regions of lithium niobate shear mode resonator for quality factor enhancement [J]. Journal of Microelectromechanical Systems,2021,30(3):369-374,
[12] [12] CHEN Guofeng,RINALDI M, High-Q X band aluminum nitride combined overtone resonators[C]// Orlando,USA:Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC),2019:1-4,
[13] [13] CHEN Guofeng,RINALDI M, Aluminum nitride combined overtone resonatorsfor the 5G high frequency bands[J]. Journal of Microelectromechanical Systems,2020,29(2):148-159,
[14] [14] ASSYLBEKOVE M,CHEN Guofeng,PIRRO M,et al, Aluminum nitride combined overtone resonator for millimeter wave 5G applications[C]//Gainesville,USA:IEEE 34th international conference on micro electro mechanical systems (MEMS),2021:202-205,
[15] [15] CASSELLA C,YU Hui,RINALDI M,et al, Aluminum nitride cross-sectional Lamé mode resonators[J]. Journal of Microelectromechanical Systems,2016,25(2):275-285,
[16] [16] SCHAFFER Z A,PIAZZA G,MISHIN S,et al, Super high frequency simple process flow cross-sectional Lame mode resonators in 20% scandium-doped aluminum nitride [C]//Vancouver,Canada:IEEE 33rd International Conference on Micro Electro Mechanical Systems(MEMS),2020:1281-1284,
[17] [17] ASSYLBEKOVA M,CHENY G F,MICHETTI G,et al, 11 GHz lateral-field-excited aluminum nitride cross-sectional Lam mode resonator[C]//Keystone,USA:Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF),2020:1-4,
[18] [18] LU Ruochen,YANG Yansong,GONG Songbin,et al, A1 resonators in 128°Y-cut lithium niobate with electromechanical coupling of 46, 4% [J]. Journal of Microelectromechanical Systems,2020,29(3):313-319,
[19] [19] Resonant Inc, High frequency resonator is foundation for high throughput 5G services—and much more[R], www, resonant, com, 2020,4:14,
[20] [20] PLESSKY V,YANDRAPALLI S,TURNER P J, et al, 5 GHz laterally-excited bulk-wave resonators (XBARs) based on thin platelets of lithium niobate [J]. Electronics Letters,2019,55(2):98-100,
[21] [21] YANDRAPALLI S,KK S E,PLESSKY V,et al, Fabrication andanalysis of thin film lithum niobate resonators for 5 GHz frequency and large Kt2 applications[C]//Gainesville,USA:IEEE 34th International Conference on Micro Electro Mechanical Systems(MEMS),2021:967-969,
[22] [22] GAO Liuqing,YANG Yansong,GONG Songbin, A 14, 7 GHz lithium niobate acoustic filter with fractional bandwidth of 2, 93%[C]//Las Vegas,USA:IEEE International Ultrasonics Symposium (IUS),2020:1-4,
[23] [23] YANG Yansong,GAO Liuqing,GONG Songbin, X-band miniature filters using lithium niobateacoustic resonators and bandwidth widening technique[J]. IEEE Transactions on Microwave Theory and Techniques,2021,69(3):1602-1610,
[24] [24] GAO Liuqing,YANG Yansong,GONG Songbin, A 19 GHz lithium niobate acoustic filter with FBW of 2, 4%[C]//Los Angeles,USA:IEEE/MTT-S International Microwave Symposium(IMS),2020:241-244,
[25] [25] YANG Yansong,LU Ruochen,GONG Songbin,et al, 10~60 GHz electromechanical resonators using thin-film lithium niobate [J]. IEEE Transactions on Microwave Theory and Techniques,2020,68(12):5211-5220,
[26] [26] FAIZAN M,VILLANUEVA L G, Frequency-scalable fabrication process flow for lithium niobate based Lamb wave resonators[J]. Journal of Micromechanics and Microengineering,2020,30(1):015008,
[27] [27] JIANG D,HU G,QI G,et al, A fully convolutional neural network-based regression approach for effective chemical composition analysis using near-infrared spectroscopy in cloud[J]. Journal of Artificial Intelligence and Technology,2021,1(1):74-82, "[28]LIU J,LIU Z,SUN C,et al, A data transmission approach based on ant colony optimization and threshold proxy re-encryption in WSNs[J]. Journal of Artificial Intelligence and Technology,2021,2(1):23-31,
[28] [28] GAO Liuqing,YANG Yansong,GONG Songbin, Wideband hybrid monolithic lithium niobate acoustic filter in the K-band[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2021,68(4):1408-1417,
[29] [29] LEE J,TEJEDOR E,WANG H,et al, Spectrum for 5G:Global status,challenges,and enabling technologies[J]. IEEE Communications Magazine,2018,56(3):12-18,
Get Citation
Copy Citation Text
YU Xiaoquan, HE Jie, MA Jinyi. Recent Advances and Prospects of Lamb Wave Devices Based on Piezo-MEMS[J]. Piezoelectrics & Acoustooptics, 2022, 44(2): 223
Special Issue:
Received: Apr. 8, 2022
Accepted: --
Published Online: Jun. 14, 2022
The Author Email: