Infrared and Laser Engineering, Volume. 44, Issue 9, 2569(2015)

Super-resolving quantum LADAR with odd coherent superposition states sources at shot noise limit

Wang Qiang1,2, Zhang Yong1, Hao Lili2, Jin Chenfei1, Yang Xu1, Xu Lu1, Yang Chenghua1, and Zhao Yuan1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(26)

    [1] [1] Boto A N, Kok P, Abrams D S, et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit[J]. Phys Rev Lett, 2000, 85: 2733-2736.

    [2] [2] Didomenico L D, Lee H W, Kok P, et al. Quantum interferometric sensors[C]//SPIE, 2004, 5359: 169-176.

    [3] [3] Lanzagorta M. Quantum Radar[M/OL]. [2014-10-08]. http: www.morganclaypool.

    [4] [4] Dutton Z, Shapiro J H, Guha S. LADAR resolution improvement using receivers enhanced with squeezed-vacuum injection and phase-sensitive amplification[J]. J Opt Soc Am B, 2010, 27: A63-A72.

    [5] [5] Dowling J P. Quantum optical metrology—the lowdown on high-N00N states[J]. Contemp Phys, 2008, 49: 125-143.

    [6] [6] Jiang K B, Lee H W, Gerry C C, et al. Super-resolving quantum radar: coherent-state sources with homodyne detection suffice to beat the diffraction limit[J]. J App Phys, 2013, 114: 193102.

    [7] [7] Gao Y, Anisimov P M, Wildfeuer C F, et al. Surper-resolution at the shot-noise limit with coherent states and photon-number-resolving detectors[J]. J Opt Soc Am B, 2010, 27: A170-174.

    [8] [8] Gerry C C, Mimih J. The parity operator in quantum optical metrology[J]. Contemporary Physics, 2010, 51(6): 497-511.

    [9] [9] Anisimov P M, Raterman G M, Chiruvelli A, et al. Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit[J]. Physical Review Letters, 2010, 104(10): 103602.

    [10] [10] Kim T, Pfister O, Holland M J, et al. Influence of decorrelation on Heisenberg-limited interferometry with quantum correlated photons[J]. Physical Review A, 1998, 57(5): 4004.

    [11] [11] Resch K J, Pregnell K L, Prevedel R, et al. Time-reversal and super-resolving phase measurements[J]. Physical Review Letters, 2007, 98(22): 223601.

    [12] [12] Huver S D, Wildfeuer C F, Dowling J P. Entangled fock states for robust quantum optical metrology, imaging, and sensing[J]. Physical Review A, 2008, 78(6): 063828.

    [13] [13] Gerry C C. Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime[J]. Physical Review A, 2000, 61(4): 043811.

    [14] [14] Bollinger J J, Itano W M, Wineland D J, et al. Optimal frequency measurements with maximally correlated states[J]. Physical Review A, 1996, 54(6): R4649.

    [15] [15] Tan Q S, Liao J Q, Wang X, et al. Enhanced interferometry using squeezed thermal states and even or odd states[J]. Physical Review A, 2014, 89(5): 053822.

    [16] [16] Gerry C C. Non-classical properties of even and odd coherent states[J]. Journal of Modern Optics, 1993, 40(6): 1053-1071.

    [17] [17] Schleich W, Pernigo M, Le Kien F. Nonclassical state from two pseudoclassical states[J]. Physical Review A, 1991, 44(3): 2172.

    [18] [18] Cohen L, Istrati D, Dovrat L, et al. Super-resolved phase measurements at the shot noise limit by parity measurement[J]. Optics Express, 2014, 22(10): 11945-11953.

    [19] [19] Conforti M, Baronio F, Trillo S. Resonant radiation shed by dispersive shock waves[J]. Physical Review A, 2014, 89(1): 013807.

    [20] [20] Ourjoumtsev A, Tualle-Brouri R, Laurat J, et al. Generating optical Schrodinger kittens for quantum information processing[J]. Science, 2006, 312(5770): 83-86.

    [21] [21] Ourjoumtsev A, Jeong H, Tualle-Brouri R, et al. Generation of optical ‘Schrodinger cats’ from photon number states[J]. Nature, 2007, 448(7155): 784-786.

    [22] [22] Takahashi H, Wakui K, Suzuki S, et al. Generation of large-amplitude coherent-state superposition via ancilla-assisted photon subtraction[J]. Physical Review Letters, 2008, 101(23): 233605.

    [23] [23] Gerrits T, Glancy S, Clement T S, et al. Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum[J]. Physical Review A, 2010, 82(3): 031802.

    [24] [24] Xu Zhengping, Shen Honghai, Xu Yongsen. Review of the development of laser active imaging system with direct ranging[J]. Chinese Optics, 2014, 8(1): 28-38. (in Chinese)

    [26] [26] Wang Q, Zhang Y, Xu Y, et al. Pseudorandom modulation quantum secured lidar[J]. Optik-International Journal for Light and Electron Optics, 2015, DOI:10.1016/j.ijleo.2015.07.048 (In Press).

    CLP Journals

    [1] Li Gao, Xiaoli Zhang, Jingting Ma, Wenxiu Yao, Qingwei Wang, Yue Sun, Zunlong Liu, Yajun Wang, Long Tian, Yaohui Zheng. Quantum enhanced Doppler LiDAR based on integrated quantum squeezed light source(Invited)[J]. Infrared and Laser Engineering, 2021, 50(3): 20210031

    [2] Wang Zhiyuan, Zhang Zijing, Zhao Yuan. Single photon quantum state measurement scheme for quantum circuit logic operation[J]. Infrared and Laser Engineering, 2020, 49(2): 205002

    [3] Shi Zhan, Fan Xiang, Cheng Zhengdong, Zhu Bin, Zhang Hongwei. Mean square convergence unbiased estimation of thermal light correlated imaging[J]. Infrared and Laser Engineering, 2016, 45(4): 424003

    Tools

    Get Citation

    Copy Citation Text

    Wang Qiang, Zhang Yong, Hao Lili, Jin Chenfei, Yang Xu, Xu Lu, Yang Chenghua, Zhao Yuan. Super-resolving quantum LADAR with odd coherent superposition states sources at shot noise limit[J]. Infrared and Laser Engineering, 2015, 44(9): 2569

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 激光雷达成像技术

    Received: Jul. 13, 2015

    Accepted: Aug. 14, 2015

    Published Online: Jan. 26, 2016

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics