Acta Optica Sinica, Volume. 44, Issue 1, 0106023(2024)

Multi-Dimensional Distributed Optical Fiber Vibration Sensing Pattern Recognition Based on Convolutional Neural Network

Xibo Jin1,2,3, Kun Liu1,2,3、*, Junfeng Jiang1,2,3, Shuang Wang1,2,3, Tianhua Xu1,2,3, Yuelang Huang1,2,3, Xinxin Hu1,2,3, Dongqi Zhang1,2,3, and Tiegen Liu1,2,3
Author Affiliations
  • 1School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
  • 3Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(10)
    Schematic diagram of DMZI system
    Workflow of unmanned aerial vehicle system
    Knocking hard signals. (a) 1D time domain optical signal; (b) 2D time-frequency image after STFT; (c) 2D time-frequency image after STFT with power segmentation
    Resnet 50 model. (a) Total structure of optical signal recognition; (b) distribution of convolution layers; (c) architecture of Bottleneck
    Schematic of SlowFast model structure
    • Table 1. Parameters of each convolution layers in Resnet 50

      View table

      Table 1. Parameters of each convolution layers in Resnet 50

      LayerParameters H×W,C
      Conv17×7,64
      Layer 11×1,643×3,641×1,256×3
      Layer 21×1,1283×3,1281×1,512×4
      Layer 31×1,2563×3,2561×1,1024×6
      Layer 41×1,5123×3,5121×1,2048×3
    • Table 2. Parameters of each convolution layers in SlowFast with Resnet3D-50 backbone

      View table

      Table 2. Parameters of each convolution layers in SlowFast with Resnet3D-50 backbone

      LayerParameters T×S2,C
      Slow pathwayFast pathway
      Data layer16,122,12
      Conv11×72,645×72,8
      Layer 11×12,641×32,641×12,256×33×12,81×32,81×12,32×3
      Layer 21×12,1281×32,1281×12,512×43×12,161×32,161×12,64×4
      Layer 33×12,2561×32,2561×12,1024×63×12,321×32,321×12,128×6
      Layer 43×12,5121×32,5121×12,2048×33×12,641×32,641×12,256×3
    • Table 3. Data distribution of optical signals and video signals

      View table

      Table 3. Data distribution of optical signals and video signals

      LabelIntrusion eventOptical signalVideo signal
      TrainValidationTestTrainValidationTest
      1Climbing14401801801121414
      2Crashing14401801801121414
      3Cutting14401801801121414
      4Kicking14401801801121414
      5Knocking hard14401801801121414
      6Knocking lightly14401801801121414
      7Pulling14401801801121414
      8Waggling14401801801121414
      9No intrusion1440180180000
    • Table 4. Comparison of recognition results of 3 different methods

      View table

      Table 4. Comparison of recognition results of 3 different methods

      MethodEvent typeP /%R /%F1 /%

      Using 2D time-frequency images

      A=96.22%)

      Label 1100.00100.00100.00
      Label 288.00100.0093.62
      Label 3100.00100.00100.00
      Label 490.00100.0094.74
      Label 5100.0086.2192.59
      Label 699.00100.0099.50
      Label 7100.0098.0499.01
      Label 893.0092.5992.80
      Label 9100.0092.5996.15

      Using 3D video signals

      A=78.59%)

      Label 130.3522.9126.11
      Label 2100.00100.00100.00
      Label 3100.0082.4290.36
      Label 4100.00100.00100.00
      Label 523.68100.0038.29
      Label 6100.00100.00100.00
      Label 775.2660.7967.26
      Label 8100.00100.00100.00

      Proposed method

      A=99.58%)

      Label 1100.00100.00100.00
      Label 2100.00100.00100.00
      Label 3100.00100.00100.00
      Label 4100.00100.00100.00
      Label 5100.00100.00100.00
      Label 6100.00100.00100.00
      Label 7100.00100.00100.00
      Label 8100.00100.00100.00
      Label 9100.0092.5996.15
    • Table 5. Comparison of different pattern recognition methods

      View table

      Table 5. Comparison of different pattern recognition methods

      ModelResponse time /s

      Number of

      intrusion events

      Prediction

      average accuracy /%

      SVM-RBF41.01597.10
      CLDNN54.00397.00
      5 layers CNN65.00693.47
      YOLOv5s70.30596.60
      Proposed method0.30999.58
    Tools

    Get Citation

    Copy Citation Text

    Xibo Jin, Kun Liu, Junfeng Jiang, Shuang Wang, Tianhua Xu, Yuelang Huang, Xinxin Hu, Dongqi Zhang, Tiegen Liu. Multi-Dimensional Distributed Optical Fiber Vibration Sensing Pattern Recognition Based on Convolutional Neural Network[J]. Acta Optica Sinica, 2024, 44(1): 0106023

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: May. 8, 2023

    Accepted: Jun. 12, 2023

    Published Online: Jan. 12, 2024

    The Author Email: Liu Kun (beiyangkl@tju.edu.cn)

    DOI:10.3788/AOS230944

    CSTR:32393.14.AOS230944

    Topics