Acta Optica Sinica, Volume. 40, Issue 23, 2312005(2020)

Optical Design of Solar Extreme Ultraviolet Normal-Incidence Broadband Imaging Spectrometer with Non-Rowland Circle Mounting

Yangguang Xing1,2,3, Lin Li1、*, Jilong Peng2、**, Shanshan Wang1、***, and Yinuo Cheng4
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
  • 3National Key Laboratory of Science and Technology on Reliability and Environment Engineering, Beijing 100094, China
  • 4Department of Precision Instrument, Tsinghua University, Beijing 100091, China
  • show less
    Figures & Tables(19)
    Schematic of solar EUV normal-incidence imaging spectrometer. (a) Rowland circle mounting; (b) non-Rowland circle mounting
    Schematic of aberration-corrected TVLS grating
    Schematic of optical layout of solar EUV broadband imaging spectrometer. (a) Two-dimensional optical layout; (b) three-dimensional model diagram
    Curve of the ruling density distribution of TVLS grating
    Ray tracing results. (a)-(c) RMS spots radii change with wavelengths under different off-axis FOV; (d) RMS spots radii versus FOV in the different wavelengths
    MTFs of optical system under different wavelengths. (a) λ=40 nm; (b) λ=53 nm; (c) λ=60 nm; (d) λ=73 nm
    Spectral resolution of system change with wavelength. (a) 40-47 nm; (b) 53-60 nm; (c) 66-73 nm
    Ray tracing module for different line-pairs spectral images
    Spectrum of line pairs imaged on three CCDs. (a) CCD-1; (b) CCD-2; (c) CCD-3
    Diffraction enclosed circle energy used to evaluate system's spatial resolution. (a) λ=43.5 nm; (b) λ=56.5 nm; (c) λ=69.5 nm
    Reflectance curve of SiC/Al multilayer film obtained by simulation change with wavelength
    TVLS grating efficiency and CCD quantum efficiency change with wavelength. (a) Grating efficiency; (b) CCD quantum efficiency
    Instrument effective area change with wavelength. (a) Proposed instrument; (b) Solar Orbiter/SPICE
    • Table 1. Technical indicators of solar EUV imaging spectrometers

      View table

      Table 1. Technical indicators of solar EUV imaging spectrometers

      InstrumentWavelength /nmSlitFOV /(')Spectralresolution /(10-4 nm)Spatialresolution /(″)GratingsSpectralmagnification
      HiRES51-633690.4TULS1.0×
      Hinode /EIS17-21 & 25-298.547&221.0TULS1.4×
      SPICE70.4-79 & 97.3-104.91395&831.1TVLS5.5×
      Proposeddesign40-47 & 53-60 &66-7318< 30< 0.60TVLS4.0×
    • Table 2. Fjk and its corresponding aberrations

      View table

      Table 2. Fjk and its corresponding aberrations

      TermAberration
      F10 and F01Basic grating equation
      F20Tangential astigmatism
      F02Sagittal astigmatism
      F11Off-axis defocusing
      F30 and F21Coma
      F12Slit curvature
      F40, F22, and F04Spherical aberration
    • Table 3. Examples of temperature and density for diagnostic plasma line in the observed spectral region

      View table

      Table 3. Examples of temperature and density for diagnostic plasma line in the observed spectral region

      IonWavelength /nmlog Tmax /Klog Ne /cm-3
      Mg VI40.3315.63>10
      Ne V41.6205.678-10
      Mg VIII43.047/43.6624.528-10
      O IV55.4515.247-8.5
      Si IX69.4696.05>11
      Mg IX70.6045.999.2-10.5
      Fe XX72.1556.92>10
    • Table 4. Technical indicators and optical element parameters for imaging spectrometer

      View table

      Table 4. Technical indicators and optical element parameters for imaging spectrometer

      Specification
      Anastigmatic spectralrange /nm40-47 & 53-60 & 66-73
      IFOV/[(″)×(') ]0.54×18
      Scanning FOV / (')± 5
      Spectralresolution /(10-4 nm)24.9-26.9
      Spatial resolution /(″)0.54
      System focal length /mm5200
      Detector /μm13.5,2048×3072
      Telescope design
      RT /mm2664
      Conic-1.33
      Δ /mm95
      Spectral imaging system design
      Slit size /(μm×mm)3.2×7
      1/d0 /mm-13000
      m+1 order
      Grating parameterInitialOptimum
      β3.986×
      i /(°)1.9251.931
      rA /mm387.000387.325
      R /mm620.397619.992
      ρ /mm616.216616.673
      b20.06580.0671
      Groove density /( groove·mm-1)3000±13
      Ruling area /mm2π×20×20
      Three independent detectors design
      CCDWavelength /nmψ /(°)
      CCD-140-4722.16
      CCD-253-6026.18
      CCD-366-7329.42
    • Table 5. Simulation parameters for ray tracing module in ZEMAX non-sequential mode

      View table

      Table 5. Simulation parameters for ray tracing module in ZEMAX non-sequential mode

      Simulation parameters for source with two angles
      X half width /mmY half width /mmX half angle /(°)Y half angle /(°)Power /WRays
      50500.150.151109
      Simulation spectral line-pairs for source with two angles
      CCD-1 /nm40 & 40.002743.5 & 43.502747 & 47.0027
      CCD-2/nm53 & 53.002656.5 & 56.502660 & 60.0026
      CCD-3/nm66 & 66.002569.5 & 69.502573 & 73.0025
      Simulation parameters for CCDs
      MaterialX half width/mmY half width/mmX /pixelY /pixel
      Absorb20.81430722048
    • Table 6. Periodic SiC/Al multilayer film parameters

      View table

      Table 6. Periodic SiC/Al multilayer film parameters

      γ /(°)d /nmτNδSiC-Al /nmδAl-SiC /nm
      8826.40.31302.10.9
    Tools

    Get Citation

    Copy Citation Text

    Yangguang Xing, Lin Li, Jilong Peng, Shanshan Wang, Yinuo Cheng. Optical Design of Solar Extreme Ultraviolet Normal-Incidence Broadband Imaging Spectrometer with Non-Rowland Circle Mounting[J]. Acta Optica Sinica, 2020, 40(23): 2312005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Jul. 7, 2020

    Accepted: Aug. 28, 2020

    Published Online: Dec. 1, 2020

    The Author Email: Li Lin (bit421@bit.edu.cn), Peng Jilong (JL_Peng@hotmail.com), Wang Shanshan (wshan@bit.edu.cn)

    DOI:10.3788/AOS202040.2312005

    Topics