Chinese Journal of Lasers, Volume. 50, Issue 18, 1813005(2023)
Interaction Between Ultrafast Laser and Transparent Hard Materials: from Phase Change Mechanism to Eternal Optical Data Storage
[1] Xu D Y[M]. Multi-dimensional optical storage(2016).
[2] Trelles O, Prins P, Snir M et al. Big data, but are we ready?[J]. Nature Reviews Genetics, 12, 224(2011).
[3] Gu M, Li X P, Cao Y Y. Optical storage arrays: a perspective for future big data storage[J]. Light: Science & Applications, 3, e177(2014).
[6] Fleischer A S. Cooling our insatiable demand for data[J]. Science, 370, 783-784(2020).
[8] Glezer E N, Mazur E. Ultrafast-laser driven micro-explosions in transparent materials[J]. Applied Physics Letters, 71, 882-884(1997).
[10] Gu M, Zhang Q M, Lamon S. Nanomaterials for optical data storage[J]. Nature Reviews Materials, 1, 16070(2016).
[11] Parisini T. Advanced control systems for data storage on magnetic tape: a long-lasting success story[J]. IEEE Control Systems Magazine, 42, 8-11(2022).
[12] Zheng C X. Research progress of optical storage technology[J]. China CIO News, 20-23(2009).
[13] Gu M, Li X P. The road to multi-dimensional bit-by-bit optical data storage[J]. Optics and Photonics News, 21, 28-33(2010).
[14] Liu Z W, Lee H, Xiong Y et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 315, 1686(2007).
[15] van de Nes A S, Braat J M, Pereira S F. High-density optical data storage[J]. Reports on Progress in Physics, 69, 2323-2363(2006).
[16] Parthenopoulos D A, Rentzepis P M. Three-dimensional optical storage memory[J]. Science, 245, 843-845(1989).
[17] Li X P, Chon J W M, Wu S H et al. Rewritable polarization-encoded multilayer data storage in 2, 5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer[J]. Optics Letters, 32, 277-279(2007).
[18] Buse K, Adibi A, Psaltis D. Non-volatile holographic storage in doubly doped lithium niobate crystals[J]. Nature, 393, 665-668(1998).
[19] Shimotsuma Y, Kazansky P G, Qiu J R et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters, 91, 247405(2003).
[20] Zhang J Y, Gecevičius M, Beresna M et al. Seemingly unlimited lifetime data storage in nanostructured glass[J]. Physical Review Letters, 112, 033901(2014).
[21] Wang L, Fan H, Li Z Z et al. Fabrication of time capsules by femtosecond laser-induced birefringence (Invited)[J]. Acta Photonica Sinica, 50, 0650105(2021).
[22] Yan Z, Gao J C, Beresna M et al. Near-field mediated 40 nm in-volume glass fabrication by femtosecond laser[J]. Advanced Optical Materials, 10, 2101676(2022).
[23] Shimotsuma Y, Sakakura M, Kazansky P G et al. Ultrafast manipulation of self-assembled form birefringence in glass[J]. Advanced Materials, 22, 4039-4043(2010).
[24] Fedotov S S, Lipatiev A S, Presniakov M Y et al. Laser-induced cavities with a controllable shape in nanoporous glass[J]. Optics Letters, 45, 5424-5427(2020).
[25] Zhong M L, Fan P X. Applications of laser nano manufacturing technologies[J]. Chinese Journal of Lasers, 38, 0601001(2011).
[26] Sun H B, Xu Y, Juodkazis S et al. Arbitrary-lattice photonic crystals created by multiphoton microfabrication[J]. Optics Letters, 26, 325-327(2001).
[27] Zhang Y C, Jiang Q L, Long M Q et al. Femtosecond laser-induced periodic structures: mechanisms, techniques, and applications[J]. Opto-Electronic Science, 1, 220005(2022).
[28] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2, 219-225(2008).
[29] Kaiser A, Rethfeld B, Vicanek M et al. Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses[J]. Physical Review B, 61, 11437-11450(2000).
[30] Sudrie L, Couairon A, Franco M et al. Femtosecond laser-induced damage and filamentary propagation in fused silica[J]. Physical Review Letters, 89, 186601(2002).
[31] Yablonovitch E, Bloembergen N. Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media[J]. Physical Review Letters, 29, 907-910(1972).
[32] Stuart B C, Feit M D, Herman S et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Physical Review B, 53, 1749-1761(1996).
[33] Tien A C, Backus S, Kapteyn H et al. Short-pulse laser damage in transparent materials as a function of pulse duration[J]. Physical Review Letters, 82, 3883-3886(1999).
[34] Gamaly E G[M]. Femtosecond laser-matter interaction: theory, experiments, and applications(2011).
[35] Chichkov B N, Momma C, Nolte S et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 63, 109-115(1996).
[36] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).
[37] Huang M, Zhao F L, Cheng Y et al. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser[J]. ACS Nano, 3, 4062-4070(2009).
[38] Schiffrin A, Paasch-Colberg T, Karpowicz N et al. Optical-field-induced current in dielectrics[J]. Nature, 493, 70-74(2013).
[39] Sokolowski-Tinten K, von der Linde D. Generation of dense electron-hole plasmas in silicon[J]. Physical Review B, 61, 2643-2650(2000).
[40] Bellouard Y, Champion A, McMillen B et al. Stress-state manipulation in fused silica via femtosecond laser irradiation[J]. Optica, 3, 1285-1293(2016).
[41] Li Z Z, Wang L, Fan H A et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment[J]. Light: Science & Applications, 9, 41(2020).
[42] Streltsov A M, Borrelli N F. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses[J]. Optics Letters, 26, 42-43(2001).
[43] Shah L, Arai A Y, Eaton S M et al. Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate[J]. Optics Express, 13, 1999-2006(2005).
[44] Nolte S, Will M, Burghoff J et al. Ultrafast laser processing: new options for three-dimensional photonic structures[J]. Journal of Modern Optics, 51, 2533-2542(2004).
[45] Watanabe W, Asano T, Yamada K et al. Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses[J]. Optics Letters, 28, 2491-2493(2003).
[46] Saliminia A, Nguyen N T, Nadeau M C et al. Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses[J]. Journal of Applied Physics, 93, 3724-3728(2003).
[47] Chan J W, Huser T R, Risbud S H et al. Waveguide fabrication in phosphate glasses using femtosecond laser pulses[J]. Applied Physics Letters, 82, 2371-2373(2003).
[48] Miura K, Qiu J R, Inouye H et al. Photowritten optical waveguides in various glasses with ultrashort pulse laser[J]. Applied Physics Letters, 71, 3329-3331(1997).
[49] Stoian R, D'Amico C, Bhuyan M K et al. Ultrafast laser photoinscription of large-mode-area waveguiding structures in bulk dielectrics[J]. Optics & Laser Technology, 80, 98-103(2016).
[50] Richter S, Heinrich M, Döring S et al. Formation of femtosecond laser-induced nanogratings at high repetition rates[J]. Applied Physics A, 104, 503-507(2011).
[51] Davis K M, Miura K, Sugimoto N et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 21, 1729-1731(1996).
[52] Shimizu M, Sakakura M, Kanehira S et al. Formation mechanism of element distribution in glass under femtosecond laser irradiation[J]. Optics Letters, 36, 2161-2163(2011).
[53] Lei Y H, Wang H J, Skuja L et al. Ultrafast laser writing in different types of silica glass[J]. Laser & Photonics Reviews, 17, 2200978(2023).
[54] Streltsov A M, Borrelli N F. Study of femtosecond-laser-written waveguides in glasses[J]. Journal of the Optical Society of America B, 19, 2496-2504(2002).
[55] Shelby J E[M]. Introduction to glass science and technology(1997).
[56] Schaffer C B, García J F, Mazur E. Bulk heating of transparent materials using a high-repetition-rate femtosecond laser[J]. Applied Physics A, 76, 351-354(2003).
[57] Stankevič V, Karosas J, Račiukaitis G et al. Investigation of the modifications properties in fused silica by the deep-focused femtosecond pulses[J]. Optics Express, 31, 4482-4496(2023).
[58] Taylor R, Hnatovsky C, Simova E. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass[J]. Laser & Photonics Review, 2, 26-46(2008).
[59] Yu J P, Xu J, Dong Q N et al. Low-loss optofluidic waveguides in fused silica enabled by spatially shaped femtosecond laser assisted etching combined with carbon dioxide laser irradiation[J]. Optics & Laser Technology, 158, 108889(2023).
[60] Della Valle G, Osellame R, Laporta P. Micromachining of photonic devices by femtosecond laser pulses[J]. Journal of Optics A: Pure and Applied Optics, 11, 013001(2009).
[61] Mikutis M, Kudrius T, Šlekys G et al. High 90% efficiency Bragg gratings formed in fused silica by femtosecond Gauss-Bessel laser beams[J]. Optical Materials Express, 3, 1862-1871(2013).
[62] Dhomkar S, Henshaw J, Jayakumar H et al. Long-term data storage in diamond[J]. Science Advances, 2, e1600911(2016).
[63] Juodkazis S, Nishimura K. Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures[J]. Physical Review Letters, 96, 166101(2006).
[64] Stankevič V, Račiukaitis G, Bragheri F et al. Laser printed nano-gratings: orientation and period peculiarities[J]. Scientific Reports, 7, 39989(2017).
[66] Buividas R, Gervinskas G, Tadich A et al. Phase transformation in laser-induced micro-explosion in olivine (Fe,Mg)2SiO4[J]. Advanced Engineering Materials, 16, 767-773(2014).
[67] Vailionis A, Gamaly E G, Mizeikis V et al. Evidence of superdense aluminium synthesized by ultrafast microexplosion[J]. Nature Communications, 2, 445(2011).
[68] Rapp L, Haberl B, Pickard C J et al. Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion[J]. Nature Communications, 6, 7555(2015).
[69] Smillie L A, Niihori M, Rapp L et al. Exotic silicon phases synthesized through ultrashort laser-induced microexplosion: characterization with Raman microspectroscopy[J]. Physical Review Materials, 4, 093803(2020).
[71] Zhou G Y, Gu M. Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal[J]. Optics Letters, 31, 2783-2785(2006).
[72] Zhou G Y, Gu M. Photonic band gaps and planar cavity of two-dimensional eightfold symmetric void-channel photonic quasicrystals[J]. Applied Physics Letters, 90, 201111(2007).
[73] Glezer E N, Milosavljevic M, Huang L et al. Three-dimensional optical storage inside transparent materials[J]. Optics Letters, 21, 2023-2025(1996).
[75] Kazansky P G, Inouye H, Mitsuyu T et al. Anomalous anisotropic light scattering in Ge-doped silica glass[J]. Physical Review Letters, 82, 2199-2202(1999).
[76] Bhardwaj V R, Simova E, Rajeev P P et al. Optically produced arrays of planar nanostructures inside fused silica[J]. Physical Review Letters, 96, 057404(2006).
[77] Rajeev P P, Gertsvolf M, Hnatovsky C et al. Transient nanoplasmonics inside dielectrics[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 40, S273-S282(2007).
[78] Liao Y, Ni J L, Qiao L L et al. High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation[J]. Optica, 2, 329-334(2015).
[79] Richter S, Heinrich M, Döring S et al. Nanogratings in fused silica: formation, control, and applications[J]. Journal of Laser Applications, 24, 042008(2012).
[80] Dai Y, Wu G R, Lin X A et al. Femtosecond laser induced rotated 3D self-organized nanograting in fused silica[J]. Optics Express, 20, 18072-18078(2012).
[81] Rudenko A, Colombier J P, Höhm S et al. Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin[J]. Scientific Reports, 7, 12306(2017).
[82] Liao Y, Pan W J, Cui Y et al. Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation[J]. Optics Letters, 40, 3623-3626(2015).
[83] Xu S A, Fan H A, Li Z Z et al. Ultrafast laser-inscribed nanogratings in sapphire for geometric phase elements[J]. Optics Letters, 46, 536-539(2021).
[84] Taylor R S, Hnatovsky C, Simova E et al. Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass[J]. Optics Letters, 32, 2888-2890(2007).
[85] Kazansky P G, Zhang J, Gecevičius M et al. Recent advances in ultrafast laser nanostructuring: S-waveplate and eternal data storage[C], 1-2(2014).
[86] Lei Y H, Sakakura M, Wang L et al. High speed ultrafast laser anisotropic nanostructuring by energy deposition control via near-field enhancement[J]. Optica, 8, 1365-1371(2021).
[87] Lei Y H, Wang H J, Shayeganrad G et al. Ultrafast laser nanostructuring in transparent materials for beam shaping and data storage[J]. Optical Materials Express, 12, 3327-3355(2022).
[88] Sakakura M, Lei Y H, Wang L et al. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass[J]. Light: Science & Applications, 9, 15(2020).
[89] Wang H J, Lei Y H, Wang L et al. 100-layer error-free 5D optical data storage by ultrafast laser nanostructuring in glass[J]. Laser & Photonics Reviews, 16, 2100563(2022).
[90] Zhang Z Y, Liu Z C, Wu D Z. Prediction of melt pool temperature in directed energy deposition using machine learning[J]. Additive Manufacturing, 37, 101692(2021).
[91] Fedotov S S, Okhrimchuk A G, Lipatiev A S et al. 3-bit writing of information in nanoporous glass by a single sub-microsecond burst of femtosecond pulses[J]. Optics Letters, 43, 851-854(2018).
[92] Yan Z, Li P Y, Gao J C et al. Anisotropic nanostructure generated by a spatial-temporal manipulated picosecond pulse for multidimensional optical data storage[J]. Optics Letters, 46, 5485-5488(2021).
Get Citation
Copy Citation Text
Ziting Liu, Yiming Yuan, Ziyue Li, Wei Gong, Xu Zhang, Xinjing Zhao, Yi Wang, Zhenze Li, Lei Wang. Interaction Between Ultrafast Laser and Transparent Hard Materials: from Phase Change Mechanism to Eternal Optical Data Storage[J]. Chinese Journal of Lasers, 2023, 50(18): 1813005
Category: micro and nano optics
Received: Apr. 18, 2023
Accepted: Jul. 3, 2023
Published Online: Sep. 12, 2023
The Author Email: Wang Lei (leiwang1987@jlu.edu.cn)