Laser & Optoelectronics Progress, Volume. 59, Issue 12, 1210017(2022)

Point Cloud Analysis Combining Gated Self-Calibration Mechanism and Graphical Convolutional Network

Jiali Xu1... Zhijun Fang1,* and Shiqian Wu2 |Show fewer author(s)
Author Affiliations
  • 1School of Electrical and Electronic Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • 2School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei , China
  • show less
    Figures & Tables(13)
    Structure of IE-Conv
    Schematic diagrams of inner and outer point set module. (a) Internal point set module; (b) external point set module
    Structure of internal point set module
    Structure of external point set module
    Architecture of interior-exterior point set shape feature convolutional network
    • Table 1. Comparison of classification accuracy for ModelNet40 dataset

      View table

      Table 1. Comparison of classification accuracy for ModelNet40 dataset

      MethodInputPoints /103Acc /%
      Pointwise-CNN31pnt186.1
      ECC19pnt187.4
      PointNet8pnt189.2
      Point-CNN33pnt191.7
      DGCNN10pnt192.2
      SO-CNN15pnt193.1
      Dense-Point26pnt193.2
      RS-CNN14nor192.8
      PAT27pnt,nor191.7
      Spec-GCN30pnt,nor191.8
      PointConv1pnt,nor192.5
      A-CNN11pnt,nor192.6
      PointASNL13pnt,nor193.2
      ELM28pnt,nor193.2
      RS-CNN14pnt,nor193.6
      SO-Net29pnt,nor290.9
      PointNet++9pnt,nor591.9
      Spider-CNN32pnt,nor592.4
      SO-Net29pnt,nor593.4
      Proposed methodpnt,nor193.9
    • Table 2. Comparison of classification complexity and time of the ModelNet40 dataset

      View table

      Table 2. Comparison of classification complexity and time of the ModelNet40 dataset

      MethodNumber of parameters /MBAcc /%FLOPs /sample
      PointNet3.5089.2440
      Spec-GCN2.0591.81112
      PointNet++1.4891.91684
      DGCNN1.8492.22767
      Proposed method1.3793.9266
    • Table 3. Comparison of segmentation accuracy of ShapeNet dataset

      View table

      Table 3. Comparison of segmentation accuracy of ShapeNet dataset

      MethodAirBagCapCarChaiEar.Gui.KnifeLampLapMotoMugPistolRockSkateTableMean
      PointNet883.478.782.574.989.673.091.585.980.895.365.293.081.257.972.880.683.7
      SONet2982.877.888.077.390.673.590.783.982.894.869.194.280.953.172.983.084.9
      PointNet++982.479.087.777.390.871.891.085.983.795.371.694.181.358.776.482.685.1
      DGCNN1084.283.784.477.190.978.591.587.382.996.067.893.382.659.775.580.685.1
      PCNN182.480.185.579.590.873.291.386.085.095.773.294.883.351.075.081.885.1
      ELM2884.080.488.080.290.777.591.286.482.695.570.093.984.155.675.682.185.3
      SpiderCNN3283.581.087.277.590.776.891.187.383.395.870.293.582.759.775.882.885.3
      SO-CNN83.984.185.077.491.378.391.787.483.896.469.793.583.158.976.282.985.7
      A-CNN1184.284.088.079.691.375.291.687.185.595.475.394.982.567.877.583.386.1
      RS-CNN1483.584.888.879.691.281.191.688.486.096.073.794.183.460.577.783.686.2
      Proposed method84.086.288.179.591.677.591.388.086.396.172.895.083.662.275.983.986.4
    • Table 4. Visualization results of SR-Net) on ShapeNet dataset

      View table

      Table 4. Visualization results of SR-Net) on ShapeNet dataset

      ObjectVisualizationObjectVisualization
      AirLamp
      BagLaptop
      CapMotor.
      CarMug
      ChairPistol
      Ear.Rocket
      Gui.Skate
      KnifeTable
    • Table 5. Ablation experiments with modules on ModelNet40 dataset

      View table

      Table 5. Ablation experiments with modules on ModelNet40 dataset

      ModelRS-CNN(*)InternalExternalInternal-externalAcc /%
      A90.1
      B92.0
      C93.2
      D92.9
      E93.9
    • Table 6. Ablation experiments on ModelNet40 dataset for different prior expressions as gates

      View table

      Table 6. Ablation experiments on ModelNet40 dataset for different prior expressions as gates

      ModelPriori expressionsChannelAcc /%
      Api-pi,jed1

      92.4

      pi-pi,jcosd1
      Bpicoordpi,jcoord6

      93.4

      pinorpi,jnor6
      Cpicoordpi,jcoordpi-pi,jed7

      93.9

      pinorpi,jnorpi-pi,jcosd7
      Dpicoordpi,jcoordpi-pi,jed793.0
      Epinorpi,jnorpi-pi,jcosd792.5
    • Table 7. Robustness experiments on ModelNet40 dataset after adding translations or rotations to point clouds

      View table

      Table 7. Robustness experiments on ModelNet40 dataset after adding translations or rotations to point clouds

      MethodSelf-calibrateTranslationRotate
      -0.2+0.290˚180˚
      PointNet70.870.642.538.6
      PointNet++88.288.247.939.7
      Proposed method90.990.990.990.9
      Proposed method92.192.192.192.1
    • Table 8. Ablation experiments of different aggregation functions and self calibration functions on ModelNet40 dataset

      View table

      Table 8. Ablation experiments of different aggregation functions and self calibration functions on ModelNet40 dataset

      ModelAggregation functionSelf-calibrateAcc /%
      AAvg92.7
      BMax93.2
      CMax93.5
      DSum93.5
      ESum93.9
    Tools

    Get Citation

    Copy Citation Text

    Jiali Xu, Zhijun Fang, Shiqian Wu. Point Cloud Analysis Combining Gated Self-Calibration Mechanism and Graphical Convolutional Network[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1210017

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jul. 29, 2021

    Accepted: Sep. 23, 2021

    Published Online: May. 23, 2022

    The Author Email: Zhijun Fang (zjfang@sues.edu.cn)

    DOI:10.3788/LOP202259.1210017

    Topics