Acta Optica Sinica, Volume. 42, Issue 18, 1801006(2022)

Aerosol Type Recognition Model Based on Naive Bayesian Classifier

Mei Zhou1, Jianhua Chang1,2、*, Sicheng Chen1, Yuanyuan Meng1, and Tengfei Dai1,2
Author Affiliations
  • 1School of Electronics & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
  • 2Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
  • show less
    References(28)

    [1] Noh Y, Müller D, Lee K et al. Depolarization ratios retrieved by AERONET sun-sky radiometer data and comparison to depolarization ratios measured with lidar[J]. Atmospheric Chemistry and Physics, 17, 6271-6290(2017).

    [2] She L, Xue Y, Guang J et al. Aerosol optical and physical properties over Beijing[C], 5962-5965(2017).

    [3] Kumar K R, Sivakumar V, Reddy R R et al. Identification and classification of different aerosol types over a subtropical rural site in Mpumalanga, South Africa: seasonal variations as retrieved from the AERONET sunphotometer[J]. Aerosol and Air Quality Research, 14, 108-123(2014).

    [4] Tan C H, Zhao T L, Xu X F et al. Climatic analysis of satellite aerosol data on variations of submicron aerosols over East China[J]. Atmospheric Environment, 123, 392-398(2015).

    [5] Ma X M, Tao Z M, Shan H H et al. Statistical distribution of extinction coefficients of tropospheric aerosols detected by lidar[J]. Acta Optica Sinica, 40, 1101003(2020).

    [6] Torres O, Ahn C, Chen Z. Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations[J]. Atmospheric Measurement Techniques, 6, 3257-3270(2013).

    [7] Lin J Y, Zheng Y, Shen X Y et al. Global aerosol classification based on Aerosol Robotic Network (AERONET) and satellite observation[J]. Remote Sensing, 13, 1114(2021).

    [8] Li X K, Zhang C R, Li W D et al. Exploring the trend, prediction and driving forces of aerosols using satellite and ground data, and implications for climate change mitigation[J]. Journal of Cleaner Production, 223, 238-251(2019).

    [9] Filonchyk M, Yan H, Zhang Z et al. Combined use of satellite and surface observations to study aerosol optical depth in different regions of China[J]. Scientific Reports, 9, 6174(2019).

    [10] Bibi H, Alam K, Chishtie F et al. Intercomparison of MODIS, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data[J]. Atmospheric Environment, 111, 113-126(2015).

    [11] Omar A H, Won J G, Winker D M et al. Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements[J]. Journal of Geophysical Research, 110, D10S14(2005).

    [12] Taylor M, Kazadzis S, Amiridis V et al. Global aerosol mixtures and their multiyear and seasonal characteristics[J]. Atmospheric Environment, 116, 112-129(2015).

    [13] Lee J, Kim J, Song C H et al. Characteristics of aerosol types from AERONET sunphotometer measurements[J]. Atmospheric Environment, 44, 3110-3117(2010).

    [14] Burton S P, Ferrare R A, Hostetler C A et al. Aerosol classification using airborne High Spectral Resolution Lidar measurements: methodology and examples[J]. Atmospheric Measurement Techniques, 5, 73-98(2012).

    [15] Choi W, Kang H, Shin D et al. Satellite-based aerosol classification for capital cities in Asia using a random forest model[J]. Remote Sensing, 13, 2464(2021).

    [16] Liang T C, Sun L, Wang Y J. Retrieval of regional aerosol optical depth using deep learning[J]. Acta Optica Sinica, 41, 0401002(2021).

    [17] Hamill P, Giordano M, Ward C et al. An AERONET-based aerosol classification using the Mahalanobis distance[J]. Atmospheric Environment, 140, 213-233(2016).

    [18] Li J, Carlson B E, Lacis A A. Using single-scattering albedo spectral curvature to characterize East Asian aerosol mixtures[J]. Journal of Geophysical Research, 120, 2037-2052(2015).

    [19] Chung C E, Kim S W, Lee M et al. Carbonaceous aerosol AAE inferred from in situ aerosol measurements at the Gosan ABC super site, and the implications for brown carbon aerosol[J]. Atmospheric Chemistry and Physics, 12, 6173-6184(2012).

    [20] Müller T, Schladitz A, Kandler K et al. Spectral particle absorption coefficients, single scattering albedos and imaginary parts of refractive indices from ground based in situ measurements at Cape Verde Island during SAMUM-2[J]. Tellus B, 63, 573-588(2011).

    [21] Lü T, Yan P, Yuan H W et al. Spam filter based on naive Bayesian classifier[J]. Journal of Physics: Conference Series, 1575, 012054(2020).

    [22] Feng C X, Zhao H L, Li Y E et al. Improved detection of focal cortical dysplasia in normal-appearing FLAIR images using a Bayesian classifier[J]. Medical Physics, 48, 912-925(2021).

    [23] Sun L J, Lu Y, Jin J G et al. An integrated Bayesian approach for passenger flow assignment in metro networks[J]. Transportation Research Part C: Emerging Technologies, 52, 116-131(2015).

    [24] Zhao J J, Gu F, Zhang J H et al. Hygroscopic growth model and scattering characteristics of single-particle aerosols[J]. Acta Optica Sinica, 40, 0301001(2020).

    [25] Zhang L, Sun J Y, Shen X J et al. Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China[J]. Atmospheric Chemistry and Physics, 15, 8439-8454(2015).

    [26] Cheng Z T, Liu D, Luo J et al. Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework[J]. Optics Express, 23, 12117-12134(2015).

    [27] Zhang X L. Linear depolarization ratios characteristics of dust aerosol particles model[J]. Acta Optica Sinica, 36, 0829001(2016).

    [28] Groß S, Esselborn M, Weinzierl B et al. Aerosol classification by airborne high spectral resolution lidar observations[J]. Atmospheric Chemistry and Physics, 13, 2487-2505(2013).

    Tools

    Get Citation

    Copy Citation Text

    Mei Zhou, Jianhua Chang, Sicheng Chen, Yuanyuan Meng, Tengfei Dai. Aerosol Type Recognition Model Based on Naive Bayesian Classifier[J]. Acta Optica Sinica, 2022, 42(18): 1801006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Jan. 20, 2022

    Accepted: Apr. 22, 2022

    Published Online: Sep. 15, 2022

    The Author Email: Chang Jianhua (jianhuachang@nuist.edu.cn)

    DOI:10.3788/AOS202242.1801006

    Topics