Chinese Journal of Lasers, Volume. 49, Issue 8, 0802007(2022)

Microstructure and Mechanical Properties of 316L-IN625 Gradient Material Prepared via Laser Deposition

Manjiang Yu1, Chengmeng Wu1, Aixin Feng1,2、*, Chenglong Zhang1, and Guoxiu Xu1
Author Affiliations
  • 1College of Mechanical & Electrical Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
  • 2Key Laboratory of Laser Processing Robot of Zhejiang Province, Wenzhou, Zhejiang 325035, China
  • show less
    References(27)

    [1] Zuback J S, Palmer T A, DebRoy T. Additive manufacturing of functionally graded transition joints between ferritic and austenitic alloys[J]. Journal of Alloys and Compounds, 770, 995-1003(2019).

    [2] DuPont J N. Microstructural evolution and high temperature failure of ferritic to austenitic dissimilar welds[J]. International Materials Reviews, 57, 208-234(2012).

    [3] Reichardt A, Shapiro A A, Otis R et al. Advances in additive manufacturing of metal-based functionally graded materials[J]. International Materials Reviews, 66, 1-29(2021).

    [4] Yeh T K, Huang G R, Wang M Y et al. Stress corrosion cracking in dissimilar metal welds with 304L stainless steel and alloy 82 in high temperature water[J]. Progress in Nuclear Energy, 63, 7-11(2013).

    [5] Liu Z Q, Meyers M A, Zhang Z F et al. Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications[J]. Progress in Materials Science, 88, 467-498(2017).

    [6] Sarathchandra D T, Subbu S K, Venkaiah N. Functionally graded materials and processing techniques: an art of review[J]. Materials Today: Proceedings, 5, 21328-21334(2018).

    [7] Li P F, Gong Y D, Zhou J Z et al. Interface characteristics of abrupt gradient materials fabricated by laser cladding[J]. Laser & Optoelectronics Progress, 58, 0714011(2021).

    [8] Larson E A, Ren X D, Adu-Gyamfi S et al. Effects of scanning path gradient on the residual stress distribution and fatigue life of AA2024-T351 aluminium alloy induced by LSP[J]. Results in Physics, 13, 102123(2019).

    [9] Hu Y, Liu S S, Cheng X et al. Finite element simulation on bending properties of TA2/TA15 gradient material by laser direct deposition[J]. Chinese Journal of Lasers, 47, 1202006(2020).

    [10] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [11] Yan L, Chen Y T, Liou F. Additive manufacturing of functionally graded metallic materials using laser metal deposition[J]. Additive Manufacturing, 31, 100901(2020).

    [12] Ji X, Sun Z G, Chang L L et al. Microstructure evolution behavior in laser melting deposition of Ti6Al4V/Inconel625 gradient high-temperature resistant coating[J]. Chinese Journal of Lasers, 46, 1102008(2019).

    [13] Ansari M, Jabari E, Toyserkani E. Opportunities and challenges in additive manufacturing of functionally graded metallic materials via powder-fed laser directed energy deposition: a review[J]. Journal of Materials Processing Technology, 294, 117117(2021).

    [14] Lin X, Yue T M, Yang H O et al. Laser rapid forming of SS316L/Rene88DT graded material[J]. Materials Science and Engineering A, 391, 325-336(2005).

    [15] Shah K, Haq I U, Khan A et al. Parametric study of development of Inconel-steel functionally graded materials by laser direct metal deposition[J]. Materials & Design, 54, 531-538(2014).

    [16] Savitha U, Reddy G J, Venkataramana A et al. Chemical analysis, structure and mechanical properties of discrete and compositionally graded SS316-IN625 dual materials[J]. Materials Science and Engineering A, 647, 344-352(2015).

    [17] Meng W, Zhang W H, Zhang W et al. Fabrication of steel-Inconel functionally graded materials by laser melting deposition integrating with laser synchronous preheating[J]. Optics & Laser Technology, 131, 106451(2020).

    [18] Bobbio L D, Otis R A, Borgonia J P et al. Additive manufacturing of a functionally graded material from Ti-6Al-4V to invar: experimental characterization and thermodynamic calculations[J]. Acta Materialia, 127, 133-142(2017).

    [19] Zhang X C, Chen Y T, Liou F. Fabrication of SS316L-IN625 functionally graded materials by powder-fed directed energy deposition[J]. Science and Technology of Welding and Joining, 24, 504-516(2019).

    [20] Casati R, Lemke J, Vedani M. Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting[J]. Journal of Materials Science & Technology, 32, 738-744(2016).

    [21] Sun Y, Hebert R J, Aindow M. Non-metallic inclusions in 17-4PH stainless steel parts produced by selective laser melting[J]. Materials & Design, 140, 153-162(2018).

    [22] Zuback J S, Palmer T A, DebRoy T. Additive manufacturing of functionally graded transition joints between ferritic and austenitic alloys[J]. Journal of Alloys and Compounds, 770, 995-1003(2019).

    [23] Huang L F, Sun Y N, Ji Y Q et al. Investigation of microstructures and mechanical properties of laser-melting-deposited AlCoCrFeNi2.5 high entropy alloy[J]. Chinese Journal of Lasers, 48, 0602107(2021).

    [24] Zhong Y, Rännar L E, Liu L F et al. Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications[J]. Journal of Nuclear Materials, 486, 234-245(2017).

    [25] Wang P, Zhang B C, Tan C C et al. Microstructural characteristics and mechanical properties of carbon nanotube reinforced Inconel625 parts fabricated by selective laser melting[J]. Materials & Design, 112, 290-299(2016).

    [26] Marchese G, Colera X G, Calignano F et al. Characterization and comparison of Inconel625 processed by selective laser melting and laser metal deposition[J]. Advanced Engineering Materials, 19, 1600635(2017).

    [27] Rombouts M, Maes G, Mertens M et al. Laser metal deposition of Inconel625: microstructure and mechanical properties[J]. Journal of Laser Applications, 24, 052007(2012).

    Tools

    Get Citation

    Copy Citation Text

    Manjiang Yu, Chengmeng Wu, Aixin Feng, Chenglong Zhang, Guoxiu Xu. Microstructure and Mechanical Properties of 316L-IN625 Gradient Material Prepared via Laser Deposition[J]. Chinese Journal of Lasers, 2022, 49(8): 0802007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Jul. 2, 2021

    Accepted: Sep. 26, 2021

    Published Online: Mar. 23, 2022

    The Author Email: Aixin Feng (aixfeng@wzu.edu.cn)

    DOI:10.3788/CJL202249.0802007

    Topics