Chinese Journal of Lasers, Volume. 48, Issue 17, 1710004(2021)

Deep Learning Based on Semantic Segmentation for Three-Dimensional Object Detection from Point Clouds

Liang Zhao1,2,3,4, Jie Hu1,2,3,4、*, Han Liu1,2,3,4, Yongpeng An1,2,3,4, Zongquan Xiong1,2,3,4, and Yu Wang1,2,3,4
Author Affiliations
  • 1School of Automotive Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
  • 2Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan, Hubei 430070, China
  • 3Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan, Hubei 430070, China
  • 4Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology, Wuhan, Hubei 430070, China;
  • show less
    Figures & Tables(18)
    Comparison of different FPS algorithms. (a) SegFPS algorithm; (b) traditional FPS algorithm
    Framework of the Seg-RCNN
    Network structure based on original point cloud algorithm
    Structure of the SegNet
    Visual detection results of our algorithm on the val split
    Unlabeled targets in the KITTI dataset
    Detected result of the Pedestrian category
    Seg-RCNN online detection based on ROS
    Principle of the Voxel-based algorithm
    Running time of our algorithm on the val split
    • Table 1. Nomenclature

      View table

      Table 1. Nomenclature

      AbbreviationExplanation
      Seg-RCNNsegmentation based region-convolution neural networks
      SegFPSsegmentation classes based further point sampling
      SegNetsemantic segmentation network for foreground points
      NMSnon-maximum-suppression
      Groupingusing keypoints to group features
      Bevbird’s eye view
      FPSfurther point sampling
    • Table 2. mAP of different algorithms on the KITTI test set unit: %

      View table

      Table 2. mAP of different algorithms on the KITTI test set unit: %

      AlgorithmReferenceTypeCar-3DCar-Bev.Cyclist-3DPedestrian-3D
      EasyModHardEasyModHardEasyModHardEasyModHard
      MV3D[6]CVPR 2017RGB+LiDAR74.9763.6354.0086.6278.9369.80------------
      F-PointNet[28]CVPR 2018RGB+LiDAR82.1969.7960.5991.1784.6774.7772.2756.1249.01------
      ContFuse[9]ECCV 2018RGB+LiDAR83.6868.7861.6794.0785.3575.88------
      AVOD-FPN[7]IROS 2018RGB+LiDAR83.0771.7665.7390.9984.8279.6263.7650.5544.93------
      PointRCNN[29]CVPR2019LiDAR85.9475.7668.3292.1387.3982.7273.9359.6053.59
      SECOND[3]Sensors 2018LiDAR83.3472.5565.8289.3983.7778.5971.3352.0845.83------
      PointPillars[10]CVPR 2019LiDAR82.5874.3168.9990.0786.5682.8177.1058.6551.92------
      VoxelNet[2]arXiv 2017LiDAR77.4765.1157.73------61.2248.3644.37------
      Ours--LiDAR89.1679.7372.2893.3689.3981.9376.2360.0554.3778.1763.8956.73
    • Table 3. mAP of different algorithms on the val split unit: %

      View table

      Table 3. mAP of different algorithms on the val split unit: %

      AlgorithmReferenceTypeModEasyHard
      MV3DCVPR 2017RGB+LiDAR62.68----
      ContFuseECCV 2018RGB+LiDAR73.25----
      F-PointNetCVPR 2018RGB+LiDAR70.92----
      AVOD-FPN[7]IROS 2018RGB+LiDAR74.44----
      PointRCNN[29]CVPR 2019LiDAR78.63----
      STD[30]ICCV 2019LiDAR79.80----
      Ours--LiDAR81.1191.3377.49
    • Table 4. 3D mAP of SegNet with different strategies

      View table

      Table 4. 3D mAP of SegNet with different strategies

      SegNet 1SegNet 23D mAP/ %
      78.23
      81.11
    • Table 5. Validation of the SegFPS

      View table

      Table 5. Validation of the SegFPS

      FPSSegFPS and FPS fusionsampling strategySegFPS3D mAP /%
      78.21
      79.01
      81.11
    • Table 6. Running time of the Point-based part of our algorithm

      View table

      Table 6. Running time of the Point-based part of our algorithm

      Name of operationSegFPSGroupingFP
      Number of operation166
      Running time /ms0.14132.75.2
    • Table 7. Running time of the Voxel-based algorithm

      View table

      Table 7. Running time of the Voxel-based algorithm

      ConvRunning time /ms
      Conv 1 (16,16) [1]1.12
      Conv 2 (16,32) [3]6.40
      Conv 3 (32,64) [3]8.62
      Conv 4 (64,128) [3]10.40
    • Table 8. Running time of each module in Seg-RCNN

      View table

      Table 8. Running time of each module in Seg-RCNN

      ModuleRunning time /ms
      Voxel-based26.54
      Point-based38.04
      SegNet1.24
      NMS6.50
      Others data transfer~8
    Tools

    Get Citation

    Copy Citation Text

    Liang Zhao, Jie Hu, Han Liu, Yongpeng An, Zongquan Xiong, Yu Wang. Deep Learning Based on Semantic Segmentation for Three-Dimensional Object Detection from Point Clouds[J]. Chinese Journal of Lasers, 2021, 48(17): 1710004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jan. 11, 2021

    Accepted: Mar. 9, 2021

    Published Online: Sep. 4, 2021

    The Author Email: Hu Jie (auto_hj@163.com)

    DOI:10.3788/CJL202148.1710004

    Topics