Opto-Electronic Engineering, Volume. 50, Issue 7, 230095(2023)

Femtosecond laser printing of vanadium dioxide based optical meta-structures with tunable spectra engineering

Jiaqi Zhu, Shiyu Wu, Shichao Song*, and Yaoyu Cao
Author Affiliations
  • Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, Guangdong 511443, China
  • show less
    References(59)

    [1] Li J Q, Yan J F, Li X et al. Research advancement on ultrafast laser microprocessing of transparent dielectrics[J]. Chin J Lasers, 48, 0202019(2021).

    [2] Capel A J, Rimington R P, Lewis M P et al. 3D printing for chemical, pharmaceutical and biological applications[J]. Nat Rev Chem, 2, 422-436(2018).

    [3] Kiefer P, Hahn V, Nardi M et al. Sensitive photoresists for rapid multiphoton 3D laser micro‐and nanoprinting[J]. Adv Opt Mater, 8, 2000895(2020).

    [4] Mayer F, Ryklin D, Wacker I et al. 3D two‐photon microprinting of nanoporous architectures[J]. Adv Mater, 32, 2002044(2020).

    [5] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001).

    [6] Lay C L, Koh C S L, Lee Y H et al. Two-photon-assisted polymerization and reduction: emerging formulations and applications[J]. ACS Appl Mater Interfaces, 12, 10061-10079(2020).

    [7] Hua J G, Liang S Y, Chen Q D et al. Free‐form micro‐optics out of crystals: femtosecond laser 3D sculpturing[J]. Adv Funct Mater, 32, 2200255(2022).

    [8] Corrielli G, Crespi A, Osellame R. Femtosecond laser micromachining for integrated quantum photonics[J]. Nanophotonics, 10, 3789-3812(2021).

    [9] Ovsianikov A, Ostendorf A, Chichkov B N. Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine[J]. Appl Surf Sci, 253, 6599-6602(2007).

    [10] Gansel J K, Thiel M, Rill M S et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 325, 1513-1515(2009).

    [11] Jiang M L, Song S C, Li Y J et al. 3D high precision laser printing of a flat nanofocalizer for subwavelength light spot array[J]. Opt Lett, 46, 356-359(2021).

    [12] Turner M D, Schröder-Turk G E, Gu M. Fabrication and characterization of three-dimensional biomimetic chiral composites[J]. Opt Express, 19, 10001-10008(2011).

    [13] McMillen B, Zhang B T, Chen K P et al. Ultrafast laser fabrication of low-loss waveguides in chalcogenide glass with 0.65 dB/cm loss[J]. Opt Lett, 37, 1418-1420(2012).

    [14] Gan Z S, Cao Y Y, Evans R A et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nat Commun, 4, 2061(2013).

    [15] Yee D W, Lifson M L, Edwards B W et al. Additive manufacturing of 3D‐architected multifunctional metal oxides[J]. Adv Mater, 31, 1901345(2019).

    [16] Liu Y J, Wang H, Ho J et al. Structural color three-dimensional printing by shrinking photonic crystals[J]. Nat Commun, 10, 4340(2019).

    [17] Saha S K, Wang D E, Nguyen V H et al. Scalable submicrometer additive manufacturing[J]. Science, 366, 105-109(2019).

    [18] Kelly B E, Bhattacharya I, Heidari H et al. Volumetric additive manufacturing via tomographic reconstruction[J]. Science, 363, 1075-1079(2019).

    [19] Jia Y C, Wang S X, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application[J]. Opto-Electron Adv, 3, 190042(2020).

    [20] Jiang M L, Zhang M S, Li X P et al. Research progress of super-resolution optical data storage[J]. Opto-Electron Eng, 46, 180649(2019).

    [21] Vyatskikh A, Ng R C, Edwards B et al. Additive manufacturing of high-refractive-index, nanoarchitected titanium dioxide for 3D dielectric photonic crystals[J]. Nano Lett, 20, 3513-3520(2020).

    [22] Frölich A, Fischer J, Zebrowski T et al. Titania woodpiles with complete three-dimensional photonic bandgaps in the visible[J]. Adv Mater, 25, 3588-3592(2013).

    [23] Hossain M M, Gu M. Broadband optical absorptions in inversed woodpile metallic photonic crystals[J]. Opt Mater Express, 2, 996-1002(2012).

    [24] Vyatskikh A, Delalande S, Kudo A et al. Additive manufacturing of 3D nano-architected metals[J]. Nat Commun, 9, 593(2018).

    [25] Wen H J, Song S C, Xie F et al. Great chiral fluorescence from the optical duality of silver nanostructures enabled by 3D laser printing[J]. Mater Horiz, 7, 3201-3208(2020).

    [26] Xu B B, Xia H, Niu L G et al. Flexible nanowiring of metal on nonplanar substrates by femtosecond‐laser‐induced electroless plating[J]. Small, 6, 1762-1766(2010).

    [27] Xiong W, Liu Y, Jiang L J et al. Laser‐directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication[J]. Adv Mater, 28, 2002-2009(2016).

    [28] Long J, Xiong W, Wei C Y R et al. Directional assembly of ZnO nanowires via three-dimensional laser direct writing[J]. Nano Lett, 20, 5159-5166(2020).

    [29] Xia H, Wang J, Tian Y et al. Ferrofluids for fabrication of remotely controllable micro‐nanomachines by two‐photon polymerization[J]. Adv Mater, 22, 3204-3207(2010).

    [30] Xie C Q, Zhu X L, Niu J B et al. Micro-and nano-metal structures fabrication technology and applications[J]. Acta Opt Sin, 31(2011).

    [31] Fang W, Lei J, Zhang P D et al. Multilevel phase supercritical lens fabricated by synergistic optical lithography[J]. Nanophotonics, 9, 1469-1477(2020).

    [32] Golubev V G, Kurdyukov D A, Pevtsov A B et al. Hysteresis of the photonic band gap in VO2 photonic crystal in the semiconductor-metal phase transition[J]. Semiconductors, 36, 1043-1047(2002).

    [33] Peter A P, Martens K, Rampelberg G et al. Metal‐insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control[J]. Adv Funct Mater, 25, 679-686(2015).

    [34] Ke Y J, Wang S C, Liu G et al. Vanadium dioxide: the multistimuli responsive material and its applications[J]. Small, 14, 1802025(2018).

    [35] Hallman K A, Miller K J, Baydin A et al. Sub‐picosecond response time of a hybrid VO2: silicon waveguide at 1550 nm[J]. Adv Opt Mater, 9, 2001721(2021).

    [36] Wang H, Yang Y, Wang L P. Wavelength-tunable infrared metamaterial by tailoring magnetic resonance condition with VO2 phase transition[J]. J Appl Phys, 116, 123503(2014).

    [37] Han C R, Parrott E P J, Humbert G et al. Broadband modulation of terahertz waves through electrically driven hybrid bowtie antenna-VO2 devices[J]. Sci Rep, 7, 12725(2017).

    [38] Liu L, Kang L, Mayer T S et al. Hybrid metamaterials for electrically triggered multifunctional control[J]. Nat Commun, 7, 13236(2016).

    [39] Wang R, Yang W Y, Gao S et al. Direct-writing of vanadium dioxide/polydimethylsiloxane three-dimensional photonic crystals with thermally tunable terahertz properties[J]. J Mater Chem C, 7, 8185-8191(2019).

    [40] Zhang Y B, Wu P H, Zhou Z G et al. Study on temperature adjustable terahertz metamaterial absorber based on vanadium dioxide[J]. IEEE Access, 8, 85154-85161(2020).

    [41] Hashemi M R M, Yang S H, Wang T Y et al. Electronically-controlled beam-steering through vanadium dioxide metasurfaces[J]. Sci Rep, 6, 35439(2016).

    [42] Driscoll T, Palit S, Qazilbash M M et al. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide[J]. Appl Phys Lett, 93, 024101(2008).

    [43] Taylor S, Yang Y, Wang L P. Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications[J]. J Quant Spectrosc Radiat Transfer, 197, 76-83(2017).

    [44] Kim M K, Lee D S, Yang Y H et al. Switchable diurnal radiative cooling by doped VO2[J]. Opto-Electron Adv, 4, 200006(2021).

    [45] Long L S, Taylor S, Wang L P. Enhanced infrared emission by thermally switching the excitation of magnetic polariton with scalable microstructured VO2 metasurfaces[J]. ACS Photonics, 7, 2219-2227(2020).

    [46] Premkumar P A, Toeller M, Radu I P et al. Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors[J]. ECS J Solid State Sci Technol, 1, P169-P174(2012).

    [47] Ji R, Hua Y N, Chen K et al. A switchable metalens based on active tri-layer metasurface[J]. Plasmonics, 14, 165-171(2019).

    [48] Yan D X, Meng M, Li J S et al. Vanadium dioxide-assisted broadband absorption and linear-to-circular polarization conversion based on a single metasurface design for the terahertz wave[J]. Opt Express, 28, 29843-29854(2020).

    [49] Ding F, Zhong S M, Bozhevolnyi S I. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies[J]. Adv Opt Mater, 6, 1701204(2018).

    [50] Liu C, Wang S C, Zhou Y et al. Index-tunable anti-reflection coatings: Maximizing solar modulation ability for vanadium dioxide-based smart thermochromic glazing[J]. J Alloys Compd, 731, 1197-1207(2018).

    [51] Yang G, Guo Y H, Pu M B et al. Miniature computational spectral detection technology based on correlation value selection[J]. Opto-Electron Eng, 49(2022).

    [52] Wang B L, Zhu Z F. Accumulation and surface modification of inorganic nano-particles[J]. J Ceram, 27(2006).

    [53] Werdehausen D, Staude I, Burger S et al. Design rules for customizable optical materials based on nanocomposites[J]. Opt Mater Express, 8, 3456-3469(2018).

    [54] Song S C, Li Y J, Yao Z F et al. 3D laser nanoprinting of optically functionalized structures with effective-refractive-index tailorable TiO2 nanoparticle-doped photoresin[J]. Nanomaterials, 12, 55(2021).

    [55] Xia X L, Zeng X Z, Song S C et al. Longitudinal super-resolution spherical multi-focus array based on column vector light modulation[J]. Opto-Electron Eng, 49(2022).

    [56] Cao Y Y, Xie F, Zhang P D et al. Dual‐beam super‐resolution direct laser writing nanofabrication technology[J]. Opto-Electron Eng, 44(2017).

    [57] Zhang X Z, Xia F, Xu J J. The mechanisms and research progress of laser fabrication technologies beyond diffraction limit[J]. Acta Phys Sin, 66(2017).

    [58] Yu H Y, Ding H B, Zhang Q et al. Three-dimensional direct laser writing of PEGda hydrogel microstructures with low threshold power using a green laser beam[J]. Light Adv Manuf, 2, 31-38(2021).

    [59] Gao W, Chao H, Zheng Y C et al. Ionic carbazole-based water-soluble two-photon photoinitiator and the fabrication of biocompatible 3D hydrogel scaffold[J]. ACS Appl Mater Interfaces, 13, 27796-27805(2021).

    Tools

    Get Citation

    Copy Citation Text

    Jiaqi Zhu, Shiyu Wu, Shichao Song, Yaoyu Cao. Femtosecond laser printing of vanadium dioxide based optical meta-structures with tunable spectra engineering[J]. Opto-Electronic Engineering, 2023, 50(7): 230095

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Apr. 25, 2023

    Accepted: Jul. 11, 2023

    Published Online: Sep. 25, 2023

    The Author Email:

    DOI:10.12086/oee.2023.230095

    Topics