Laser & Optoelectronics Progress, Volume. 62, Issue 2, 0237012(2025)

Lightweight Network for Real-Time Object Detection in Fisheye Cameras

Xinlei Wang1,2、*, Chenxu Liao1, Shuo Wang1, and Ruilin Xiao1
Author Affiliations
  • 1School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu , China
  • 2School of Electronic Information Engineering, Wuxi University, Wuxi 214105, Jiangsu , China
  • show less
    Figures & Tables(17)
    Overall framework of Fisheye-YOLOv8
    Faster-EMA module and convolution calculation process
    Calculation process of EMA module
    The fusion mode of BiFPN
    Internal structure of RFAConv
    RetinaNet architecture
    Comparison of G-LHead and original detection head modifications
    The detection effects under different conditions. (a)‒(c) Original images; (a1)‒(c1) detection results of EfficientDet; (a2)‒(c2) detection results of PGDS-YOLOv8s; (a3)‒(c3) detection results of YOLOv8m; (a4)‒(c4) detection results of Fisheye-YOLOv8
    Front camera and side camera detection results.(a)‒(b) Original images; (a1)‒(b1) detection results of EfficientDet; (a2)‒(b2) detection results of PGDS-YOLOv8s; (a3)‒(b3) detection results of YOLOv8m; (a4)‒(b4) detection results of Fisheye-YOLOv8
    Detection effects of LOAF dataset. (a)‒(d) Original images; (a1)‒(d1) detection results of YOLOv8m; (a2)‒(d2) detection results of Fisheye-YOLOv8
    Detection effects of VisDrone2019 dataset. (a)‒(d) Original image; (a1)‒(d1) detection results of YOLOv8m; (a2)‒(d2) detection results of Fisheye-YOLOv8
    • Table 1. The impact of each module on different indicators

      View table

      Table 1. The impact of each module on different indicators

      MethodP /%R /%mAP /%Params /106GFLOPs /109FPS
      YOLOv8m79.834.658.325.878.789
      YOLOv8m+Faster-EMA79.534.458.320.468.295
      YOLOv8m+Faster-EMA+RFA-BiFPN79.935.859.912.261.2101
      YOLOv8m+Faster-EMA+RFA-BiFPN+G-LHead82.234.759.810.048.7109
      YOLOv8m+Faster-EMA+RFA-BiFPN+G-LHead+LAMP83.136.360.55.323.4118
    • Table 2. Influences of each module on different detection objects

      View table

      Table 2. Influences of each module on different detection objects

      ModelmAP /%
      busbikecarpedestriantruck
      YOLOv8m69.558.369.736.544.9
      YOLOv8m+Faster-EMA68.157.970.537.145.5
      YOLOv8m+Faster-EMA+RFA-BiFPN67.858.871.141.859.6
      YOLOv8m+Faster-EMA+RFA-BiFPN+G-LHead66.359.171.243.159.2
      YOLOv8m+Faster-EMA+RFA-BiFPN+G-LHead+LAMP70.159.870.643.258.8
    • Table 3. Performance comparison of different algorithms on Fisheye8K data set

      View table

      Table 3. Performance comparison of different algorithms on Fisheye8K data set

      ModelP /%R /%mAP /%Params /106GFLOPs /109FPS
      Faster-RCNN65.227.124.8136.9370.227
      EfficientDet69.433.344.512.025.129
      SSD67.832.137.326.362.743
      YOLOv5s81.525.954.19.123.8123
      YOLOv778.941.539.936.5103.2129
      YOLOv8m79.834.658.325.878.789
      FisheyeDet78.233.555.316.344.2108
      PGDS-YOLOv8s82.335.760.210.828.5115
      Fisheye-YOLOv883.136.360.55.323.4118
    • Table 4. Performance comparison of different algorithms on WoodScape datasets

      View table

      Table 4. Performance comparison of different algorithms on WoodScape datasets

      ModelP /%R /%mAP /%
      Faster-RCNN63.725.323.1
      EfficientDet67.938.542.5
      SSD68.640.638.6
      YOLOv5s78.335.256.6
      YOLOv775.746.242.4
      YOLOv8m76.541.258.5
      FisheyeDet76.843.156.8
      PGDS-YOLOv8s78.242.359.2
      Fisheye-YOLOv878.544.259.7
    • Table 5. Generalization studies on LOAF datasets

      View table

      Table 5. Generalization studies on LOAF datasets

      ModelP /%R /%mAP /%Params /106GFLOPs /109FPS
      YOLOv8m77.540.561.225.878.795
      Fisheye-YOLOv877.345.362.35.323.4127
    • Table 6. Generalization study on VisDrone2019 dataset

      View table

      Table 6. Generalization study on VisDrone2019 dataset

      ModelP /%R /%mAP /%Params /106GFLOPs /109FPS
      YOLOv8m51.240.541.125.878.798
      Fisheye-YOLOv853.441.042.65.323.4132
    Tools

    Get Citation

    Copy Citation Text

    Xinlei Wang, Chenxu Liao, Shuo Wang, Ruilin Xiao. Lightweight Network for Real-Time Object Detection in Fisheye Cameras[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0237012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: May. 8, 2024

    Accepted: Jun. 3, 2024

    Published Online: Jan. 6, 2025

    The Author Email:

    DOI:10.3788/LOP241236

    CSTR:32186.14.LOP241236

    Topics