Laser & Optoelectronics Progress, Volume. 45, Issue 1, 29(2008)
Research Progress of All-Solid-State Yellow Lasers
[1] [1] R. W. Farley, P. D. Dao. Development of an intracavity-sumed multiple-wavelength Nd:YAG laser for a rugged, solid-state sodium lidar system[J]. Appl. Opt., 1995, 34(21):4269~4273
[2] [2] Y. F. Chen, Y. S. Chen, S. W. Tsai. Diode-pumped Q-switched laser with intracavity sum frequency mixing in perideically poled KTP[J]. Appl. Phys. B, 2004, 79(2):207~210
[3] [3] Jiri Janousek, Sandra Johansson, Peter Tidemand-Lichtenberg et al.. Efficient all solid-state continuous-wave yellow-orange light source[J]. Opt. Exp., 2005, 13(4):1188~1192
[4] [4] Norihito Saito, Kazuyuki Akagawa, Yutaka Hayano et al.. 1W 589 nm coherent light-source achieved by quasi-intracavity sum-frequency-generation[C]. Advanced Solid-State Lasers, Optical Society of America, Washington DC, 2003,:MB18
[5] [5] Bo Yong, Geng Aicong, Lu Yuanfu et al.. A 4.8-W M2=4.6 continuous-wave intracavity sum-frequency diode-pumped solid-state yellow laser[J]. Chin. Phys. Lett., 2006, 23(6):1494~1497
[6] [6] C. G. Bethea. Megawatt power at 1.318 mm in Nd3+:YAG and simultaneous oscillation at both 1.06 and 1.318 mm[J]. IEEE J. Quant. Electron., 1973, QE-9:254
[7] [7] Joseph. D. Vance, Chiao-Yao She, Hans Moosmuller. Continuous-wave, all-solid-state, single-frequency 400-mW source at 589 nm based on doubly resonant sum-frequency mixing in a monolithic lithum niobate resonator[J]. Appl. Opt., 1998, 37(21):4891~4896
[8] [8] Joshua C. Bienfang, Craig A. Denman, Brent W. Grime et al.. 20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers[J]. Opt. Lett., 2003, 28(22):2219~2221
[9] [9] Yan Feng, Shenghong Huang, Akira Shirakawa et al.. 589 nm light source based on Raman fiber Laser[J]. J. Jpn.Appl. Phys., 2004, 43(6A):722~724
[10] [10] D. Georgiev, V. P. Gapontsev, A. G. Dronov et al.. Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm[J]. Opt. Exp., 2005, 13(18):6772~6776
[11] [11] Chuan He, Thomas H. Chyba. Solid-state barium nitrate Raman laser in the visible region[J]. Opt. Commun., 1997, 135(4-6):273~278
[12] [12] A. A. Kaminskii, C. L. McCray, H. R. Lee et al.. High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals[J]. Opt. Commun., 2000, 183(1-4):277~287
[13] [13] Pavel Cerny, Peter G. Zverev, Helena Jelínkova et al.. Efficient Raman shifting of picosecond pulses using BaWO4 crystal[J]. Opt. Commun., 2000, 177(1-6):397~404
[14] [14] R. P. Mildren, H. M. Pask, J. A. Piper. High-Efficiency Raman converter generating 1.5 W of red-orange output[C]. Advanced Solid-State Lasers, Optical Society of America, Washington DC, 2006, MC3
[15] [15] E. O. Ammann. Simultaneous stimulated Raman scattering and optical frequency mixing in lithium iodate[J]. Appl. Phys. Lett., 1979, 34(12):838~840
[16] [16] H. M. Pask, J. A. Piper. Practical 580 nm source based on frequency doubling of an intracavity-Raman-shifted Nd:YAG laser[J]. Opt. Commun., 1998, 148(4-6):285~288
[17] [17] H. M. Pask, J. A. Piper. Efficient all-solid-state yellow laser source producing 1.2-W average power[J]. Opt. Lett., 1999, 24(21):1490~1492
[18] [18] Richard P. Mildren,Helen M. Pask, Hamish Ogilvy et al.. Discretely tunable, all-solid-state laser in the green, yellow,and red[J]. Opt. Lett., 2005, 30(12):1500~1502
[19] [19] Peter Dekker, Helen M. Pask, James A. Piper. All-solid-state 704 mW continuous-wave yellow source based on an intracavity frequency-doubled crystalline Raman Laser[J]. Opt. Lett., 2007, 32(9):1114~1116
[20] [20] Shutao Li, Xingyu Zhang, Qingpu Wang et al.. Diode-side-pumped intracavity frequency-doubeled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm[J]. Opt. Lett., 2007, 32(20):2951~2953
[21] [21] Alexander A. Kaminskii, Ken-ichi Ueda, Hans J. Eichler et al.. Tetragonal vanadates YVO4 and GdVO4-new efficient x(3)-materials for Raman lasers[J]. Opt. Commun., 2001, 194(1-3):201~206
[22] [22] Takashige Omatsu, Andrew Lee, Peter Dekker et al.. Compact continuous-wave yellow laser based on a self-stimulating Raman Nd:YVO4 laser[C]. Advanced Solid-state Lasers, Optical Society of America, Washington DC, 2006, :WB19
[23] [23] Peter Dekker, Helen M. Pask, David J. Spence et al.. Continuous-wave,intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm[J]. Opt. Exp., 2007, 15(11):7038~7046
[24] [24] S. Maile Giffin, Glenn W. Baxter, Iain T. Mckinnie et al.. Efficient 550-600 nm tunable laser based on noncritically phase-matched frequency doubling of room-temperature LiF:F2 in Iithium triborate[J]. Appl. Opt., 2002, 41(21):4331~4335
[25] [25] Hongen Gu, Honghai Liu. Transversely pumped yellow-green laser using color centers in the lithium fluoride crystal at room temperature[J]. Opt. Commun., 2002, 201(1-3):113~116
[26] [26] Iain T. Mckinnie, AnnMarie L. Oien. Tunable red-yellow laser based on second harmonic generation of Cr:forsterite in KTP[J]. Opt. Commun., 1997, 141(3-4):157~161
[27] [27] X. X. Zhang, W-L. Zhou. A diode pumped solid state yellow laser at 564.5 nm[C]. OSA Trends in Optics and Photonics on Advanced Solid State lasers, Optical Society of America, Washington DC, 1997, 77~78
[28] [28] Phillip A. Burns, Judith M. Dawes, Peter Dekker et al.. Coupled-cavity, single-frequency, tunable CW Yb:YAB yellow microchip laser[J]. Opt. Commun., 2002, 207(1-6):315~320
[30] [30] Fuqiang Jia, Quan zheng, Qing hua Xue et al.. Yellow light generation by frequency doubling of a diode-pumped Nd:YAG laser[J]. Opt. Commun., 2006, 259(1):212~215
[31] [31] F. Heine, E. Heumann, T. Danger et al.. Room temperature continuous wave upconversion Er:YLF laser at 551 nm[C]. OSA Proceedings on Advanced Solid-State Lasers, Optical Society of America, 1994, 344~347
Get Citation
Copy Citation Text
WANG Zhichao, DU Chenlin, RUAN Shuangchen. Research Progress of All-Solid-State Yellow Lasers[J]. Laser & Optoelectronics Progress, 2008, 45(1): 29