Chinese Optics Letters, Volume. 20, Issue 9, 092501(2022)
Generation of Lommel beams through highly scattering media Editors' Pick
[1] D. McGloin, K. Dholakia. Bessel beams: diffraction in a new light. Contemp. Phys., 46, 15(2005).
[2] Y.-X. Ren, H. He, H. Tang, K. K. Wong. Non-diffracting light wave: fundamentals and biomedical applications. Front. Phys., 9, 698343(2021).
[3] A. Aiello, G. S. Agarwal. Wave-optics description of self-healing mechanism in Bessel beams. Opt. Lett., 39, 6819(2014).
[4] J. Durnin, J. Miceli, J. Eberly. Diffraction-free beams. Phys. Rev. Lett., 58, 1499(1987).
[5] V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, K. Dholakia. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature, 419, 145(2002).
[6] Y. A. Ayala, A. V. Arzola, K. Volke-Sepúlveda. Comparative study of optical levitation traps: focused Bessel beam versus Gaussian beams. J. Opt. Soc. Am. B, 33, 1060(2016).
[7] F. O. Fahrbach, P. Simon, A. Rohrbach. Microscopy with self-reconstructing beams. Nat. Photonics, 4, 780(2010).
[8] L. Gao, L. Shao, B.-C. Chen, E. Betzig. 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy. Nat. Protoc., 9, 1083(2014).
[9] M. Duocastella, C. B. Arnold. Bessel and annular beams for materials processing. Laser Photonics Rev., 6, 607(2012).
[10] U. Levy, S. Derevyanko, Y. Silberberg. Light modes of free space. Prog. Opt., 61, 237(2016).
[11] J. C. Gutiérrez-Vega, M. Iturbe-Castillo, S. Chávez-Cerda. Alternative formulation for invariant optical fields: Mathieu beams. Opt. Lett., 25, 1493(2000).
[12] M. A. Bandres, B. Rodríguez-Lara. Nondiffracting accelerating waves: Weber waves and parabolic momentum. New J. Phys., 15, 013054(2013).
[13] C. W. McCutchen. Generalized aperture and the three-dimensional diffraction image. J. Opt. Soc. Am., 54, 240(1964).
[14] A. A. Kovalev, V. V. Kotlyar. Lommel modes. Opt. Commun., 338, 117(2015).
[15] Q. Zhao, L. Gong, Y.-M. Li. Shaping diffraction-free Lommel beams with digital binary amplitude masks. Appl. Opt., 54, 7553(2015).
[16] W. Zuo, Y.-S. Han, Z.-L. Zhou, H.-F. Xu, Z.-X. Zhou, J. Qu. Optical trapping force on two types of particles with a focused partially coherent Lommel-Gaussian beam. Results Phys., 32, 105076(2022).
[17] J. Tu, X. Wang, X. Yu, H. Wang, D. Deng. Free space realization of the symmetrical tunable auto-focusing Lommel Gaussian vortex beam. Ann. Phys., 534, 2100419(2021).
[18] L. Yu, Y. Zhang. Analysis of modal crosstalk for communication in turbulent ocean using Lommel-Gaussian beam. Opt. Express, 25, 22565(2017).
[19] Z. Lu, B. Yan, K. Chang, Y. Qiao, C. Li, J. Hu, T. Xu, H. Zhang, W. Lin, Y. Yue. Space division multiplexing technology based on transverse wavenumber of Lommel–Gaussian beam. Opt. Commun., 488, 126835(2021).
[20] Y. Hui, Z. Cui, P. Song. Propagation characteristics of non-diffracting Lommel beams in a gradient-index medium. Waves Random Complex Medium, 31, 2514(2020).
[21] Q. Liang, Y. Zhu, Y. Zhang. Approximations wander model for the Lommel Gaussian-Schell beam through unstable stratification and weak ocean-turbulence. Results Phys., 14, 102511(2019).
[22] Q. Suo, Y. Han, Z. Cui. The spectral properties of a partially coherent Lommel-Gaussian beam in turbulent atmosphere. Opt. Laser Technol., 123, 105940(2020).
[23] H. Li, C. M. Woo, T. Zhong, Z. Yu, Y. Luo, Y. Zheng, X. Yang, H. Hui, P. Lai. Adaptive optical focusing through perturbed scattering media with a dynamic mutation algorithm. Photonics Res., 9, 202(2021).
[24] Y. Shen, Y. Liu, C. Ma, L. V. Wang. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation. J. Biomed Opt., 21, 085001(2016).
[25] T. Peng, R. Li, S. An, X. Yu, M. Zhou, C. Bai, Y. Liang, M. Lei, C. Zhang, B. Yao, P. Zhang. Real-time optical manipulation of particles through turbid media. Opt. Express, 27, 4858(2019).
[26] A. Boniface, M. Mounaix, B. Blochet, R. Piestun, S. Gigan. Transmission-matrix-based point-spread-function engineering through a complex medium. Optica, 4, 54(2017).
[27] C. Ma, J. Di, Y. Zhang, P. Li, F. Xiao, K. Liu, X. Bai, J. Zhao. Reconstruction of structured laser beams through a multimode fiber based on digital optical phase conjugation. Opt. Lett., 43, 3333(2018).
[28] L. Li, Y. Zheng, H. Liu, X. Chen. Reconstitution of optical orbital angular momentum through strongly scattering media via feedback-based wavefront shaping method. Chin. Opt. Lett., 19, 100101(2021).
[29] Z. Chen, X. Hu, X. Ji, J. Pu. Needle beam generated by a laser beam passing through a scattering medium. IEEE Photonics J., 10, 6501108(2018).
[30] W. Yuan, Y. Xu, K. Zheng, S. Fu, Y. Wang, Y. Qin. Experimental generation of perfect optical vortices through strongly scattering media. Opt. Lett., 46, 4156(2021).
[31] S.-J. Tu, X. Zhao, Q.-Y. Yue, Y.-J. Cai, C.-S. Guo, Q. Zhao. Shaping the illumination beams for STED imaging through highly scattering media. Appl. Phys. Lett., 119, 211105(2021).
[32] S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, S. Gigan. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601(2010).
[33] S. A. Goorden, J. Bertolotti, A. P. Mosk. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device. Opt. Express, 22, 17999(2014).
Get Citation
Copy Citation Text
Shijie Tu, Qiannan Lei, Yangjian Cai, Qian Zhao, "Generation of Lommel beams through highly scattering media," Chin. Opt. Lett. 20, 092501 (2022)
Category: Optoelectronics
Received: Mar. 4, 2022
Accepted: May. 10, 2022
Published Online: Jun. 16, 2022
The Author Email: Yangjian Cai (yangjiancai@sdnu.edu.cn), Qian Zhao (zhaoqian@sdnu.edu.cn)