NUCLEAR TECHNIQUES, Volume. 47, Issue 10, 100602(2024)

Design method of high-flux lead-bismuth cooled reactor neutron flux maximization based on BP neural network

Tong WANG1,2, Zijing LIU1,2、*, Pengcheng ZHAO1,2, and Yingjie XIAO1,2
Author Affiliations
  • 1College of Nuclear Science and Technology, University of South China, Hengyang 421001, China
  • 2Hunan Digital Reactor Engineering and Technology Research Center, University of South China, Hengyang 421001, China
  • show less
    Figures & Tables(17)
    Cross-sectional views of a multifunctional ultra-high flux lead-bismuth cooled reactor(a) Cross section of core along X-Y axis, (b) Cross section of core along X-Z axis, (c) Cross section of fuel assembly, (d) Cross section of fuel rod
    Data distribution plot of 1 600 design variables
    Learning curve of BP neural network prediction model(a) φmax neural network prediction model, (b) keff neural network prediction model
    Flow chart of sensitivity analysis method for core design parameters based on Sobol index method
    Flowchart of optimization method based on BP neural network dynamic surrogate model
    Operation flow of high-flux lead-bismuth cooled reactor optimization design platform
    Sensitivity index of core design parameters to maximum neutron flux (color online)
    Iterative optimization results of maximum neutron flux density in the core
    • Table 1. Multi-functional ultra high flux lead-bismuth cooled reactor design parameters

      View table
      View in Article

      Table 1. Multi-functional ultra high flux lead-bismuth cooled reactor design parameters

      设计参数Design parameters数值Numerical value
      热功率Thermal power / MW150
      换料周期Refueling cycle / d90
      冷却剂材料Coolant material208Pb-Bi
      反射层材料Reflecting layer material208Pb
      包壳材料Cladding materialT91
      燃料棒间隙填充气体Fuel rod gap filler gasHe
      入口温度Inlet temperature / ℃170
      出口温度Outlet temperature / ℃536.5
      燃料装载量/235U装载量Fuel loads/235U loads / kg779/175.3
      堆芯活性区等效直径Equivalent diameter of active zone / cm58.14
      堆芯活性区高度Height of active zone / cm50
      燃料棒内/外直径Fuel rod inner/outer diameter / cm4/4.6
      燃料棒气隙宽度Fuel rod gas gap width / mm0.1
      包壳厚度Cladding thickness / mm0.2
      栅距Grid pitch / mm5.2
      栅径比P/D Grid diameter ratio P/D1.130 4
      反射层轴向/径向厚度Reflective layer axial/radial thickness / cm80/120
    • Table 2. Multi-functional ultra-high flux lead-bismuth cooled reactor optimization variable value intervals

      View table
      View in Article

      Table 2. Multi-functional ultra-high flux lead-bismuth cooled reactor optimization variable value intervals

      设计变量Design variables取值区间Value interval
      栅径比Grid diameter ratio[1.00, 1.50]
      燃料芯块直径Fuel diameter / cm[0.3, 1.5]
      堆芯活性区高度Height of core active area / cm[40, 200]
      反射层厚度Reflective layer thickness / cm[20, 220]
    • Table 3. Physical parameters of lead-bismuth alloy

      View table
      View in Article

      Table 3. Physical parameters of lead-bismuth alloy

      参数Parameters值/计算式Value/Equation
      熔点Melting point / KTM=398.0
      沸点Boiling point / KTB=1 927.0
      表面张力Surface tension / N‧m-1σ=(448.5–0.08T)×10-3
      密度Density / kg‧m-3ρ=11 065–1.293T
      等压比热Constant pressure specific heat / J‧(kg‧K)-1Cp=164.8–3.94×10-2T+1.25×10-5T2–4.56×105T2
      动力粘度Viscosity of dynamics / Pa‧sμ=4.94×10-4exp(754.1/T)
      热导率Heat conduction / W‧(m‧K)-1λ=3.284+1.617×10-2T–2.305×10-6T2
    • Table 4. High-flux lead-bismuth cooled reactor training database

      View table
      View in Article

      Table 4. High-flux lead-bismuth cooled reactor training database

      样本

      Sample

      size

      设计变量

      Design variable

      目标函数响应值

      Objective function

      response value

      约束条件响应值

      Constraint response

      value

      栅径比

      Grid pitch ratio

      燃料芯块直径

      Fuel diameter

      / cm

      堆芯活性区高度

      Height of core

      active zone / cm

      反射层厚度

      Reflective layer

      thickness / cm

      φmax / n·cm–2·s–1keff
      11.493 7760.429 575185.214 6162.842 21.662 1×10151.215 37
      21.315 7690.677 58791.307 3185.845 71.548 1×10151.327 71
      31.495 5110.741 313164.465 9152.645 87.189 8×10141.391 04
      41.427 0460.884 54972.922 3133.951 01.218 5×10151.334 17
      51.420 8331.470 29555.927 6193.398 06.153 2×10141.398 67
      61.236 8951.407 29568.267 460.641 85.943 2×10141.461 60
      71.240 6461.489 613100.568 1109.038 43.461 9×10141.528 40
      81.227 7130.751 283162.399 0115.514 57.351 6×10141.437 19
      91.174 6091.465 010187.868 3143.498 91.858 2×10141.592 46
      101.485 6310.663 466143.914 9177.673 09.966 5×10141.349 12
      1 6001.183 9041.387 36785.603 8152.429 04.558 4×10141.516 41
    • Table 5. Hyperparameter space setting

      View table
      View in Article

      Table 5. Hyperparameter space setting

      超参数Super-parameter数值Numerical value
      隐藏层层数Number of hidden layers[1, 2, 3, 4, 5]
      学习率Learning rate[1×10–4, 1×10–3, 1×10–2, 1×10–1]
      训练批次Batch size[32, 48, 96, 128, 256, 512, 1 024]
      L2正则化系数L2 regularizer coefficient[1×10–3, 1×10–2, 1×10–1]
    • Table 6. Neural network model architecture setup

      View table
      View in Article

      Table 6. Neural network model architecture setup

      参数

      Parameters

      φmax神经网络模型

      φmax neural network model

      keff神经网络模型

      keff neural network model

      输入参数

      Input parameters

      燃料芯块直径、栅距、活性区高度、反射层厚度

      Fuel diameter, grid pitch, active zone height, reflective layer thickness

      输出参数

      Output parameters

      堆芯最大快中子通量

      Maximum fast neutron flux in the core

      有效增殖因数

      Effective multiplication factor

      学习率Learning rate0.0010.01
      训练次数Epochs2 0002 000
      训练批次Batch size32512
      隐藏层层数Number of hidden layers13
      隐藏层神经元个数Number of neurons per hidden layer100100/100/100
      激活函数Activation functionReLuReLu
      损失函数Loss functionMean_squared_errorMean_squared_error
      优化器Optimization algorithmAdamAdam
      正则化RegularizationL2(0.000 1)L2(0.000 1)
    • Table 7. Prediction accuracy of neural network models

      View table
      View in Article

      Table 7. Prediction accuracy of neural network models

      神经网络预测模型

      Neural network prediction model

      MSE / 10–4R2 / 10–2
      φmax神经网络φmax neural network9.974 40.999 1
      keff神经网络keff neural network1.093 90.998 5
    • Table 8. Comparison of results between neural network predicted values and RMC calculated values

      View table
      View in Article

      Table 8. Comparison of results between neural network predicted values and RMC calculated values

      堆芯设计参数

      Core design parameters

      数值Value
      第一组Group 1第二组Group 2第三组Group 3
      栅径比Grid pitch ratio1.096 21.095 41.091 5
      燃料芯块直径Fuel diameter / cm0.391 40.405 40.405 1
      堆芯活性区高度Height of core active zone / cm44.313 840.340 940.381 1
      反射层厚度Reflective layer thickness / cm212.711 1207.437 4211.449 3

      φmax

      /1015 n·cm–2·s–1

      BP神经网络预测值BP NN predicted value8.832 09.107 09.128 8
      RMC计算值RMC calculated value8.827 39.105 09.127 5
      相对误差Relative error / %0.053 30.021 80.014 3
      keffBP神经网络预测值BP NN predicted value1.008 21.003 01.003 8
      RMC计算值RMC calculated value1.008 71.002 81.004 0
      相对误差Relative error / %0.047 00.022 50.019 4
    • Table 9. Optimal program design parameters

      View table
      View in Article

      Table 9. Optimal program design parameters

      堆芯方案及参数Core program and parameters初始方案Initial program优化方案Optimization solutions
      最大中子通量密度Maximum neutron flux density / n·cm–2·s–17.979 8×10159.209 8×1015
      栅径比Grid pitch ratio1.108 71.090 6
      燃料芯块直径Fuel diameter / cm0.40.402 7
      堆芯活性区高度Height of core active zone / cm5040.477 7
      反射层厚度Reflective layer thickness / cm80214.182 0
      初始keff Initial keff1.005 91.001 5
      换料周期Refuel cycle / d>90>90
      包壳最高温度Maximum cladding temperature / °C533.63525.43
      芯块最大温度Maximum fuel pellet temperature / °C992.67969.10
    Tools

    Get Citation

    Copy Citation Text

    Tong WANG, Zijing LIU, Pengcheng ZHAO, Yingjie XIAO. Design method of high-flux lead-bismuth cooled reactor neutron flux maximization based on BP neural network[J]. NUCLEAR TECHNIQUES, 2024, 47(10): 100602

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: NUCLEAR ENERGY SCIENCE AND ENGINEERING

    Received: Jan. 31, 2024

    Accepted: --

    Published Online: Dec. 13, 2024

    The Author Email: LIU Zijing (LIUZijing)

    DOI:10.11889/j.0253-3219.2024.hjs.47.100602

    Topics