Laser & Optoelectronics Progress, Volume. 56, Issue 11, 111003(2019)

Quality Assessment Without Reference Images Based on Convolution Neural Network and Deep Forest

Yindong Chen1, Chaofeng Li2, and Qingbing Sang1、*
Author Affiliations
  • 1 School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • 2 Institute of Logistics Science & Engineering, Shanghai Maritime University, Shanghai 200135, China;
  • show less
    References(42)

    [1] Wang Z, Bovik A C. Modern image quality assessment[J]. Synthesis Lectures on Image, Video, and Multimedia Processing, 2, 1-156(2006).

         Wang Z, Bovik A C. Modern image quality assessment[J]. Synthesis Lectures on Image, Video, and Multimedia Processing, 2, 1-156(2006).

    [10] Li C F, Zhang Y, Wu X J et al. A multi-scale learning local phase and amplitude blind image quality assessment for multiply distorted images[J]. IEEE Access, 6, 64577-64586(2018).

         Li C F, Zhang Y, Wu X J et al. A multi-scale learning local phase and amplitude blind image quality assessment for multiply distorted images[J]. IEEE Access, 6, 64577-64586(2018).

    [11] Kang L, Ye P, Li Y et al. Convolutional neural networks for no-reference image quality assessment. [C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA. New York: IEEE, 1733-1740(2014).

         Kang L, Ye P, Li Y et al. Convolutional neural networks for no-reference image quality assessment. [C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA. New York: IEEE, 1733-1740(2014).

    [12] Wu M Y, Chen L. Blind image quality assessment via convolutional neural network. [C]∥2016 9th International Symposium on Computational Intelligence and Design (ISCID), December 10-11, 2016, Hangzhou, China. New York: IEEE, 221-224(2016).

         Wu M Y, Chen L. Blind image quality assessment via convolutional neural network. [C]∥2016 9th International Symposium on Computational Intelligence and Design (ISCID), December 10-11, 2016, Hangzhou, China. New York: IEEE, 221-224(2016).

    [15] Zhou Z H. -05-14)[2018-11-01]. https:∥arxiv.org/abs/1702.08835v2.(2018).

         Zhou Z H. -05-14)[2018-11-01]. https:∥arxiv.org/abs/1702.08835v2.(2018).

    [16] Zhou Z H[M]. Machine learning, 171-178(2016).

         Zhou Z H[M]. Machine learning, 171-178(2016).

    [18] Sheikh H R, Wang Z, Cormack L et al[2018-11-01]. LIVE image quality assessment database release 2[2018-11-01]. http:∥live.ece.utexas.edu/research/quality..

         Sheikh H R, Wang Z, Cormack L et al[2018-11-01]. LIVE image quality assessment database release 2[2018-11-01]. http:∥live.ece.utexas.edu/research/quality..

    [19] Ponomarenko N, Lukin V, Zelensky A et al. TID2008-A database for evaluation of full-reference visual quality assessment metrics[J]. Advances of Modern Radioelectronics, 10, 30-45(2009).

         Ponomarenko N, Lukin V, Zelensky A et al. TID2008-A database for evaluation of full-reference visual quality assessment metrics[J]. Advances of Modern Radioelectronics, 10, 30-45(2009).

    [21] Ye P, Kumar J, Kang L et al. Unsupervised feature learning framework for no-reference image quality assessment. [C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, RI, USA. New York: IEEE, 1098-1105(2012).

         Ye P, Kumar J, Kang L et al. Unsupervised feature learning framework for no-reference image quality assessment. [C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, RI, USA. New York: IEEE, 1098-1105(2012).

    Tools

    Get Citation

    Copy Citation Text

    Yindong Chen, Chaofeng Li, Qingbing Sang. Quality Assessment Without Reference Images Based on Convolution Neural Network and Deep Forest[J]. Laser & Optoelectronics Progress, 2019, 56(11): 111003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Nov. 23, 2018

    Accepted: Dec. 25, 2018

    Published Online: Jun. 13, 2019

    The Author Email: Qingbing Sang (sangqb@163.com)

    DOI:10.3788/LOP56.111003

    Topics