Optics and Precision Engineering, Volume. 33, Issue 3, 367(2025)

Detection of seed viability by photoacoustic carbon dioxide sensing

Zhenyu GUO, Yashan FAN, Baojie ZHAI, Ruijun XIE, Zhijin SHANG, Yali TIAN, Xuanbing QIU*, and Chuanliang LI
Author Affiliations
  • Shanxi Precision Measurement and Online Testing Equipment Engineering Research Center, College of Applied Science, Taiyuan University of Science and Technology, Taiyuan030024, China
  • show less
    References(35)

    [1] SZEMRUCH C, GALLO C, MURCIA M et al. Electrical conductivity test for predict sunflower seeds vigor[J]. International Journal of Agriculture and Environmental Science, 6, 118-127(2019).

    [2] HUANG P, YUAN J, YANG P et al. Nondestructive detection of sunflower seed vigor and moisture content based on hyperspectral imaging and chemometrics[J]. Foods, 13, 1320(2024).

    [3] REED R C, BRADFORD K J, KHANDAY I. Seed germination and vigor: ensuring crop sustainability in a changing climate[J]. Heredity (Edinb), 128, 450-459(2022).

    [4] TAHER H, MARTINO SSAN, ABADÍA M B et al. Respiration of barley seeds (Hordeum vulgare L.) under different storage conditions[J]. Journal of Stored Products Research, 104, 102178(2023).

    [5] DOMERGUE J B, ABADIE C, LIMAMI A et al. Seed quality and carbon primary metabolism[J]. Plant Cell Environ, 42, 2776-2788(2019).

    [6] WANG S, WU M, ZHONG S et al. A rapid and quantitative method for determining seed viability using 2, 3, 5-triphenyl tetrazolium chloride (TTC): with the example of wheat seed[J]. Molecules, 28, 6828(2023).

    [7] ŠERÁ B. Methodological contribution on seed germination and seedling initial growth tests in wild plants[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51, 13164(2023).

    [8] MARCOS VALLE F J, GASTÓN A, ABALONE R M et al. Study and modelling the respiration of corn seeds (Zea mays L.) during hermetic storage[J]. Biosystems Engineering, 208, 45-57(2021).

    [9] ZHAO G W, CAO D D, CHEN H Y et al. A study on the rapid assessment of conventional rice seed vigour based on oxygen-sensing technology[J]. Seed Science and Technology, 41, 257-269(2013).

    [10] 贾良权, 祁亨年, 胡文军. 种子呼吸CO2浓度检测系统[J]. 光学 精密工程, 27, 1397-1404(2019).

         JIA L Q, QI H N, HU W J et al. CO2 concentration detection system for seed respiration[J]. Opt. Precision Eng., 27, 1397-1404(2019).

    [11] QIAO Y Y, TANG L P, GAO Y et al. Sensitivity enhanced NIR photoacoustic CO detection with SF6 promoting vibrational to translational relaxation process[J]. Photoacoustics, 25, 100334(2022).

    [12] WEI T T, WU H P, YIN X K et al. Impact of humidity and SF6 on CO detection based on quartz-enhanced photoacoustic spectroscopy[J]. Opt. Precision Eng., 26, 1870-1875(2018).

         卫婷婷, 武红鹏, 尹旭坤. 湿度和SF6在石英增强光声光谱中对CO分子弛豫率的影响[J]. 光学 精密工程, 26, 1870-1875(2018).

    [13] GONG Z F, GAO T L, MEI L et al. Ppb-level detection of methane based on an optimized T-type photoacoustic cell and a NIR diode laser[J]. Photoacoustics, 21, 100216(2021).

    [14] LÜ P F, LU ZH Q, HE Q ZH et al. Non-invasive blood glucose in vivo detection based on photoacoustic spectroscopy[J]. Opt. Precision Eng., 27, 1301-1308(2019).

         吕鹏飞, 陆志谦, 何巧芝. 基于光声谱法的无创血糖在体检测[J]. 光学 精密工程, 27, 1301-1308(2019).

    [15] ZHANG G Y, GUO M, ZHAO X Y et al. Miniaturized nonresonant photoacoustic gas analyzer for CO2 detection[J]. Microwave and Optical Technology Letters, 65, 1829-1837(2023).

    [16] QIAO S, HE Y, SUN H et al. Ultra-highly sensitive dual gases detection based on photoacoustic spectroscopy by exploiting a long-wave, high-power, wide-tunable, single-longitudinal-mode solid-state laser[J]. Light: Advanced Manufacturing, 13, 100(2024).

    [17] MA Y F, LIU Y H, HE Y et al. Design of multipass cell with dense spot patterns and its performance in a light-induced thermoelastic spectroscopy-based methane sensor[J]. Light: Advanced Manufacturing, 6, 1(2025).

    [18] SUN H Y, HE Y, QIAO S D et al. Highly sensitive and real-simultaneous CH4/C2H2 dual-gas LITES sensor based on Lissajous pattern multi-pass cell[J]. Opto-Electronic Science, 3, 240013(2024).

    [19] LI Y F, GUAN G Y, LU Y et al. Highly sensitive near-infrared gas sensor system using a novel H-type resonance-enhanced multi-pass photoacoustic cell[J]. Measurement, 220, 113380(2023).

    [20] LI ZH G, LIU J X, SI G SH et al. T-type photoacoustic sensor based on multiple reflection of light beams[J]. Acta Optica Sinica, 42, 1928001(2022).

         李振钢, 刘家祥, 司赶上. 基于光束多次反射的T型光声传感器[J]. 光学学报, 42, 1928001(2022).

    [21] WANG F, WU J, CHENG Y et al. Simultaneous detection of greenhouse gases CH4 and CO2 based on a dual differential photoacoustic spectroscopy system[J]. Opt Express, 31, 33898-33913(2023).

    [22] GUO G, LI L, ZHOU Y et al. High-sensitivity differential Helmholtz photoacoustic system combined with the herriott multipass cell and its application in seed respiration[J]. Anal Chem, 96, 7730-7737(2024).

    [23] LI T L, SIMA C T, AI Y et al. Photoacoustic spectroscopy-based ppb-level multi-gas sensor using symmetric multi-resonant cavity photoacoustic cell[J]. Photoacoustics, 32, 100526(2023).

    [24] XIAO H P, ZHAO J B, SIMA C T et al. Ultra-sensitive ppb-level methane detection based on NIR all-optical photoacoustic spectroscopy by using differential fiber-optic microphones with gold-chromium composite nanomembrane[J]. Photoacoustics, 26, 100353(2022).

    [25] FU L J, LU P, SIMA C T et al. Small-volume highly-sensitive all-optical gas sensor using non-resonant photoacoustic spectroscopy with dual silicon cantilever optical microphones[J]. Photoacoustics, 27, 100382(2022).

    [26] XIN F, LI J, GUO J et al. Measurement of atmospheric CO2 column concentrations based on open-path TDLAS[J]. Sensors (Basel), 21, 1722(2021).

    [27] 王爽, 韩燮, 李晓. 弹光调制测椭偏参量的数字锁相数据处理[J]. 光学 精密工程, 26, 1314-1321(2018).

         WANG SH, HAN X, LI X et al. Digital phase-locked data processing for ellipsometric parameter measurements based on photoelastic modulation[J]. Opt. Precision Eng., 26, 1314-1321(2018).

    [28] ZHANG Q W, JEONG W, KANG D J. Lock-in amplifiers as a platform for weak signal measurements: Development and applications[J]. Current Applied Physics, 66, 95-109(2024).

    [29] KHAN W, SHAH S, ULLAH A et al. Utilizing hydrothermal time models to assess the effects of temperature and osmotic stress on maize (Zea mays L.) germination and physiological responses[J]. BMC Plant Biology, 23, 414(2023).

    [30] GUO M, ZONG J, ZHANG J et al. Effects of temperature and drought stress on the seed germination of a peatland lily (Lilium concolor var. megalanthum)[J]. Front Plant Sci, 15, 1462655(2024).

    Tools

    Get Citation

    Copy Citation Text

    Zhenyu GUO, Yashan FAN, Baojie ZHAI, Ruijun XIE, Zhijin SHANG, Yali TIAN, Xuanbing QIU, Chuanliang LI. Detection of seed viability by photoacoustic carbon dioxide sensing[J]. Optics and Precision Engineering, 2025, 33(3): 367

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 7, 2024

    Accepted: --

    Published Online: Apr. 30, 2025

    The Author Email: Xuanbing QIU (qiuxb@tyust.edu.cn)

    DOI:10.37188/OPE.20253303.0367

    Topics