Optics and Precision Engineering, Volume. 33, Issue 3, 367(2025)
Detection of seed viability by photoacoustic carbon dioxide sensing
[1] SZEMRUCH C, GALLO C, MURCIA M et al. Electrical conductivity test for predict sunflower seeds vigor[J]. International Journal of Agriculture and Environmental Science, 6, 118-127(2019).
[2] HUANG P, YUAN J, YANG P et al. Nondestructive detection of sunflower seed vigor and moisture content based on hyperspectral imaging and chemometrics[J]. Foods, 13, 1320(2024).
[3] REED R C, BRADFORD K J, KHANDAY I. Seed germination and vigor: ensuring crop sustainability in a changing climate[J]. Heredity (Edinb), 128, 450-459(2022).
[4] TAHER H, MARTINO SSAN, ABADÍA M B et al. Respiration of barley seeds (Hordeum vulgare L.) under different storage conditions[J]. Journal of Stored Products Research, 104, 102178(2023).
[5] DOMERGUE J B, ABADIE C, LIMAMI A et al. Seed quality and carbon primary metabolism[J]. Plant Cell Environ, 42, 2776-2788(2019).
[6] WANG S, WU M, ZHONG S et al. A rapid and quantitative method for determining seed viability using 2, 3, 5-triphenyl tetrazolium chloride (TTC): with the example of wheat seed[J]. Molecules, 28, 6828(2023).
[7] ŠERÁ B. Methodological contribution on seed germination and seedling initial growth tests in wild plants[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51, 13164(2023).
[8] MARCOS VALLE F J, GASTÓN A, ABALONE R M et al. Study and modelling the respiration of corn seeds (Zea mays L.) during hermetic storage[J]. Biosystems Engineering, 208, 45-57(2021).
[9] ZHAO G W, CAO D D, CHEN H Y et al. A study on the rapid assessment of conventional rice seed vigour based on oxygen-sensing technology[J]. Seed Science and Technology, 41, 257-269(2013).
[10] 贾良权, 祁亨年, 胡文军. 种子呼吸CO2浓度检测系统[J]. 光学 精密工程, 27, 1397-1404(2019).
JIA L Q, QI H N, HU W J et al. CO2 concentration detection system for seed respiration[J]. Opt. Precision Eng., 27, 1397-1404(2019).
[11] QIAO Y Y, TANG L P, GAO Y et al. Sensitivity enhanced NIR photoacoustic CO detection with SF6 promoting vibrational to translational relaxation process[J]. Photoacoustics, 25, 100334(2022).
[12] WEI T T, WU H P, YIN X K et al. Impact of humidity and SF6 on CO detection based on quartz-enhanced photoacoustic spectroscopy[J]. Opt. Precision Eng., 26, 1870-1875(2018).
卫婷婷, 武红鹏, 尹旭坤. 湿度和SF6在石英增强光声光谱中对CO分子弛豫率的影响[J]. 光学 精密工程, 26, 1870-1875(2018).
[13] GONG Z F, GAO T L, MEI L et al. Ppb-level detection of methane based on an optimized T-type photoacoustic cell and a NIR diode laser[J]. Photoacoustics, 21, 100216(2021).
[14] LÜ P F, LU ZH Q, HE Q ZH et al. Non-invasive blood glucose
吕鹏飞, 陆志谦, 何巧芝. 基于光声谱法的无创血糖在体检测[J]. 光学 精密工程, 27, 1301-1308(2019).
[15] ZHANG G Y, GUO M, ZHAO X Y et al. Miniaturized nonresonant photoacoustic gas analyzer for CO2 detection[J]. Microwave and Optical Technology Letters, 65, 1829-1837(2023).
[16] QIAO S, HE Y, SUN H et al. Ultra-highly sensitive dual gases detection based on photoacoustic spectroscopy by exploiting a long-wave, high-power, wide-tunable, single-longitudinal-mode solid-state laser[J]. Light: Advanced Manufacturing, 13, 100(2024).
[17] MA Y F, LIU Y H, HE Y et al. Design of multipass cell with dense spot patterns and its performance in a light-induced thermoelastic spectroscopy-based methane sensor[J]. Light: Advanced Manufacturing, 6, 1(2025).
[18] SUN H Y, HE Y, QIAO S D et al. Highly sensitive and real-simultaneous CH4/C2H2 dual-gas LITES sensor based on Lissajous pattern multi-pass cell[J]. Opto-Electronic Science, 3, 240013(2024).
[19] LI Y F, GUAN G Y, LU Y et al. Highly sensitive near-infrared gas sensor system using a novel H-type resonance-enhanced multi-pass photoacoustic cell[J]. Measurement, 220, 113380(2023).
[20] LI ZH G, LIU J X, SI G SH et al. T-type photoacoustic sensor based on multiple reflection of light beams[J]. Acta Optica Sinica, 42, 1928001(2022).
李振钢, 刘家祥, 司赶上. 基于光束多次反射的T型光声传感器[J]. 光学学报, 42, 1928001(2022).
[21] WANG F, WU J, CHENG Y et al. Simultaneous detection of greenhouse gases CH4 and CO2 based on a dual differential photoacoustic spectroscopy system[J]. Opt Express, 31, 33898-33913(2023).
[22] GUO G, LI L, ZHOU Y et al. High-sensitivity differential Helmholtz photoacoustic system combined with the herriott multipass cell and its application in seed respiration[J]. Anal Chem, 96, 7730-7737(2024).
[23] LI T L, SIMA C T, AI Y et al. Photoacoustic spectroscopy-based ppb-level multi-gas sensor using symmetric multi-resonant cavity photoacoustic cell[J]. Photoacoustics, 32, 100526(2023).
[24] XIAO H P, ZHAO J B, SIMA C T et al. Ultra-sensitive ppb-level methane detection based on NIR all-optical photoacoustic spectroscopy by using differential fiber-optic microphones with gold-chromium composite nanomembrane[J]. Photoacoustics, 26, 100353(2022).
[25] FU L J, LU P, SIMA C T et al. Small-volume highly-sensitive all-optical gas sensor using non-resonant photoacoustic spectroscopy with dual silicon cantilever optical microphones[J]. Photoacoustics, 27, 100382(2022).
[26] XIN F, LI J, GUO J et al. Measurement of atmospheric CO2 column concentrations based on open-path TDLAS[J]. Sensors (Basel), 21, 1722(2021).
[27] 王爽, 韩燮, 李晓. 弹光调制测椭偏参量的数字锁相数据处理[J]. 光学 精密工程, 26, 1314-1321(2018).
WANG SH, HAN X, LI X et al. Digital phase-locked data processing for ellipsometric parameter measurements based on photoelastic modulation[J]. Opt. Precision Eng., 26, 1314-1321(2018).
[28] ZHANG Q W, JEONG W, KANG D J. Lock-in amplifiers as a platform for weak signal measurements: Development and applications[J]. Current Applied Physics, 66, 95-109(2024).
[29] KHAN W, SHAH S, ULLAH A et al. Utilizing hydrothermal time models to assess the effects of temperature and osmotic stress on maize (Zea mays L.) germination and physiological responses[J]. BMC Plant Biology, 23, 414(2023).
[30] GUO M, ZONG J, ZHANG J et al. Effects of temperature and drought stress on the seed germination of a peatland lily (
Get Citation
Copy Citation Text
Zhenyu GUO, Yashan FAN, Baojie ZHAI, Ruijun XIE, Zhijin SHANG, Yali TIAN, Xuanbing QIU, Chuanliang LI. Detection of seed viability by photoacoustic carbon dioxide sensing[J]. Optics and Precision Engineering, 2025, 33(3): 367
Category:
Received: Nov. 7, 2024
Accepted: --
Published Online: Apr. 30, 2025
The Author Email: Xuanbing QIU (qiuxb@tyust.edu.cn)