Laser & Optoelectronics Progress, Volume. 56, Issue 13, 131101(2019)

Method of Detecting Abnormal Behavior in Video Sequences Based on Deep Network Models

Peiji Wu*, Xue Mei, Yi He, and Shenqiang Yuan
Author Affiliations
  • College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, Jiangsu 211816, China
  • show less
    Figures & Tables(15)
    CNN flow chart
    Abnormal behaviors
    Normal behaviors
    Direct classification results
    Processed results
    Adam algorithm optimization results
    Relationship between λ and filtering performance
    Convergence curve comparison
    Misrecognition rate curve comparison
    Comparison of several algorithms
    • Table 1. Convolutional neural network parameters

      View table

      Table 1. Convolutional neural network parameters

      LayerSize /(pixel×pixel)Number of layers
      Input28×281
      Convolution kernel5 ×53
      Pooling layer2 ×23
      Fully connectedlayer192 ×12
      Output10 ×11
    • Table 2. Comparison of misidentification rates of six optimization algorithms[21]

      View table

      Table 2. Comparison of misidentification rates of six optimization algorithms[21]

      AlgorithmSGDAdaDeltaNAGAdaGradAdamRMSProp
      False rate /%16.1519.5628.6818.9712.3317.37
    • Table 3. Misrecognition rate comparison

      View table

      Table 3. Misrecognition rate comparison

      Number ofiterationsOldmisrecognitionrate /%Newmisrecognitionrate /%Reductionrate /%
      10050.4419.1861.97
      120027.1512.6953.26
      220020.2610.2749.31
      340015.348.4345.05
      400012.338.0135.04
    • Table 4. Recognition effect of different algorithms

      View table

      Table 4. Recognition effect of different algorithms

      AlgorithmTwo-streamTSNiDTTRNThispaper
      False rate /%9.377.938.547.268.01
      Reduction rate /%14.5-1.06.2-10.3-
    • Table 5. Recognition effect on UT-interaction database

      View table

      Table 5. Recognition effect on UT-interaction database

      AlgorithmTwo-streamTSNiDTTRNThispaper
      False rate /%12.629.4910.448.929.53
      Reduction rate /%24.5-0.48.7-6.8-
    Tools

    Get Citation

    Copy Citation Text

    Peiji Wu, Xue Mei, Yi He, Shenqiang Yuan. Method of Detecting Abnormal Behavior in Video Sequences Based on Deep Network Models[J]. Laser & Optoelectronics Progress, 2019, 56(13): 131101

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Dec. 13, 2018

    Accepted: Jan. 22, 2019

    Published Online: Jul. 11, 2019

    The Author Email: Wu Peiji (1434519290@qq.com)

    DOI:10.3788/LOP56.131101

    Topics