Chinese Journal of Lasers, Volume. 41, Issue 4, 403007(2014)
Numerical Simulation of Recast Layer Formation in Nanosecond Pulse Laser Drilling on Nickel-Based High-Temperature Alloy
[1] [1] Ezugwu E Key improvements in the machining of difficult-to-cut aerospace superalloys[J]. International Journal of Machine Tools and Manufacture, 2005, 45(12-13): 1353-1367.
[2] [2] Su Hansheng, Wu Zhongtang. Creep-fatigue behaviour of a Ni-base single crystal alloy DD3 and its life prediction[J]. Acta Metallurgica Sinica, 1993, 29(1): 25-32.
[3] [3] Hu Jiankai, V Levin. Acoustic microscopic testing around laser-made holes on engine blade[J]. Applied Acoustics, 1999, 18(6): 15-17.
[4] [4] Peng Ruitao, Liao Miao, Tan Yuanqiang, et al.. Experimental study on prestressed cutting of nickel based superalloys[J]. Chinese Journal of Mechanical Engineering, 2012, 48(19): 186-191.
[6] [6] Yuan H, Tong H, Li M, et al.. Computational study of nanosecond pulsed laser ablation and the application to momentum coupling[J]. Journal of Applied Physics, 2012, 112(2): 023105.
[7] [7] Chichkov B, Momma C, Nolte S, et al.. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 1996, 63(2): 109-115.
[8] [8] Li Zhiyou, Wang Li. Laser surface to cast layer structure on the properties of directional solidification alloy DZ22 fatigue effect[J]. Materials Engineering, 1994, (8): 31-32.
[9] [9] Tan B. Deep micro hole drilling in a silicon substrate using multi-bursts of nanosecond UV laser pulses[J]. Journal of Micromechanics and Microengineering, 2006, 16(1): 109-112.
[10] [10] Garofano J K, Marcus H L, Aindow M. Nanoscale carbide precipitation in the recast layer of a percussion laser-drilled superalloy[J]. Scripta Materialia, 2009, 61(10): 943-946.
[11] [11] Ihlemann J, Wolff B, Simon P. Nanosecond and femtosecond excimer laser ablation of fused silica[J]. Applied Physics A, 1992, 54(4): 363-368.
[12] [12] Weck A, Crawford T, Wilkinson D, et al.. Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses[J]. Applied Physics A, 2008, 90(3): 537-543.
[15] [15] Luft A, Franz U, Emsermann L, et al.. A study of thermal and mechanical effects on materials induced by pulsed laser drilling[J]. Applied Physics A, 1996, 63(2): 93-101.
[16] [16] Bugayev A, Gupta M, El-Bandrawy M. Dynamics of laser hole drilling with nanosecond periodically pulsed laser[J]. Optics and Lasers in Engineering, 2006, 44(8): 797-802.
[17] [17] Yilbas B S, Sahin A Z, Davies R. Laser heating mechanism including evaporation process initiating laser drilling[J]. International Journal of Machine Tools and Manufacture, 1995, 35(7): 1047-1062.
[18] [18] Chien W T, Hou S C. Investigating the recast layer formed during the laser trepan drilling of Inconel 718 using the Taguchi method[J]. The International Journal of Advanced Manufacturing Technology, 2007, 33(3): 308-316.
[19] [19] Khan A, Celotto S, Tunna L, et al. Influence of microsupersonic gas jets on nanosecond laser percussion drilling[J]. Optics and Lasers in Engineering, 2007, 45(6): 709-718.
[20] [20] Wang K D, Duan W Q, Mei X S, et al.. Technology to drill micro-holes without recast layer by laser on nickel-based alloy[J]. Advanced Materials Research, 2012, 459: 303-307.
[21] [21] Bogaerts A, Chen Z, Bleiner D. Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments[J]. Journal of Analytical Atomic Spectrometry, 2006, 21(4): 384-395.
[22] [22] Gusarov A, Smurov I. Near-surface laser–vapour coupling in nanosecond pulsed laser ablation[J]. Journal of Physics D: Applied Physics, 2003, 36(23): 2962.
[23] [23] Gusarov A V, Smurov I. Thermal model of nanosecond pulsed laser ablation: Analysis of energy and mass transfer[J]. Journal of Applied Physics, 2005, 97(1): 014307.
[24] [24] Lu Q. Thermodynamic evolution of phase explosion during high-power nanosecond laser ablation[J]. Physical Review E, 2003, 67(1): 016410.
[25] [25] Clair G, LHermite D. 1D modelling of nanosecond laser ablation of copper samples in argon at P=1 atm with a wavelength of 532 nm[J]. Journal of Applied Physics, 2011, 110(8): 083307.
[26] [26] Jiang L, Tsai H L. Improved two-temperature model and its application in ultrashort laser heating of metal films[J]. Journal of Heat Transfer, 2005, 127(10): 1167-1173.
[27] [27] Zhao Xuemin, Wang Shenglie, Yang Hai, et al.. Study on dynamic laser drilling for sticking plaster[J]. Laser Technology, 2006, 30(3): 308-310.
[28] [28] Ba Ruizhang, Zhang Xiaobing. Laser machining closely spaced holes[J]. Aeronautical Manufacturing Technology, 2003, (7): 68-71.
[29] [29] Wu Su, zhao Haiyan, Wang Yu, et al.. High energy beam welding numerical simulation of the new model of the heat source[J]. Transactions of the China Welding Institution, 2004, 25(1): 92-94.
[30] [30] Long Risheng, Liu Weijun. Numerical simulation of multi-track and multi-layer temperature field on laser direct metal shaping[J]. 1st International Symposium on Digital Manufacture, 2006, 1-3: 1111-1116.
[31] [31] Pang Shengyong. A Study on the Transient Keyhole and Moving Weld Pool Behaviors and Mechanisms of Deep Penetration Laser Welding[D]. Wuhan: Huazhong University of Science and Technology, 2011.
[32] [32] Voller V, Prakash C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719.
[33] [33] Osher S, Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces[M]. Springer Verlag, 2003.
[34] [34] Ki H, Mazumder J, Mohanty P S. Modeling of laser keyhole welding: part I. Mathematical modeling, numerical methodology, role of recoil pressure, multiple reflections, and free surface evolution[J]. Metallurgical and Materials Transactions A, 2002, 33(6): 1817-1830.
[35] [35] Ki H, Mazumder J, Mohanty P S. Modeling of laser keyhole welding: part II. Simulation of keyhole evolution, velocity, temperature profile, and experimental verification[J]. Metallurgical and Materials Transactions A, 2002, 33(6): 1831-1842.
[36] [36] Semak V, Matsunawa A. The role of recoil pressure in energy balance during laser materials processing[J]. Journal of Physics D: Applied Physics, 1997, 30(18): 2541-2552.
[37] [37] Matsunawa A, Semak V. The simulation of front keyhole wall dynamics during laser welding[J]. Journal of Physics D: Applied Physics, 1997, 30(5): 798-809.
[38] [38] Pang S, Chen L, Zhou J, et al.. A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding[J]. Journal of Physics D: Applied Physics, 2011, 44(2): 025301.
[39] [39] Ghoreishi M, Low D, Li L. Comparative statistical analysis of hole taper and circularity in laser percussion drilling[J]. International Journal of Machine Tools and Manufacture, 2002, 42(9): 985-995.
Get Citation
Copy Citation Text
Luo Yao, Pang Shengyong, Zhou Jianxin, Li Huaixue. Numerical Simulation of Recast Layer Formation in Nanosecond Pulse Laser Drilling on Nickel-Based High-Temperature Alloy[J]. Chinese Journal of Lasers, 2014, 41(4): 403007
Category: laser manufacturing
Received: Aug. 14, 2013
Accepted: --
Published Online: Mar. 14, 2014
The Author Email: Luo Yao (675285064@qq.com)