Journal of Quantum Optics, Volume. 29, Issue 1, 10801(2023)
Quantum Plasmon Polariton in Two-dimensional Material
[1] [1] BASOV D N, FOGLER M M, ABAJO F J G D. Polaritons in van der Waals materials[J]. 2016, 354(6309):aag1992. DOI: 10.1126/science.aag1992.
[2] [2] LOW T, CHAVES A, CALDWELL J D, et al. Polaritons in layered two-dimensional materials[J]. Nature Materials, 2017, 16(2):182-194. DOI: 10.1038/nmat4792.
[3] [3] ZHANG Q, HU G, MA W, et al. Interface nano-optics with van der Waals polaritons[J]. Nature, 2021, 597(7875):187-195. DOI: 10.1038/s41586-021-03581-5.
[4] [4] KARANIKOLAS V, SUZUKI S, LI S, et al. Perspective on 2D material polaritons and innovative fabrication techniques[J]. 2022, 120(4):040501. DOI: 10.1063/5.0074355.
[5] [5] GONALVES P A D, STENGER N, COX J D, et al. Strong Light-Matter Interactions Enabled by Polaritons in Atomically Thin Materials[J]. Advanced Optical Materials, 2020, 8(5):1901473. DOI: 10.1002/adom.201901473.
[6] [6] KOPPENS F H L, CHANG D E, GARCA DE ABAJO F J. Graphene Plasmonics: A Platform for Strong Light-Matter Interactions[J]. Nano Letters, 2011, 11(8):3370-3377. DOI: 10.1021/nl201771h.
[7] [7] GRIGORENKO A N, POLINI M, NOVOSELOV K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11):749-758. DOI: 10.1038/nphoton.2012.262.
[8] [8] HU H, YU R, TENG H, et al. Active control of micrometer plasmon propagation in suspended graphene[J]. Nature Communications, 2022, 13(1):1465. DOI: 10.1038/s41467-022-28786-8.
[9] [9] CALDWELL J D, KRETININ A V, CHEN Y, et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride[J]. Nature Communications, 2014, 5(1):5221. DOI: 10.1038/ncomms6221.
[10] [10] CALDWELL J D, AHARONOVICH I, CASSABOIS G, et al. Photonics with hexagonal boron nitride[J]. Nature Reviews Materials, 2019, 4(8):552-567. DOI: 10.1038/s41578-019-0124-1.
[11] [11] ALFARO-MOZAZ F J, RODRIGO S G, ALONSO-GONZLEZ P, et al. Deeply subwavelength phonon-polaritonic crystal made of a van der Waals material[J]. Nature Communications, 2019, 10(1):42. DOI: 10.1038/s41467-018-07795-6.
[12] [12] DUFFERWIEL S, SCHWARZ S, WITHERS F, et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities[J]. Nature Communications, 2015, 6(1):8579. DOI: 10.1038/ncomms9579.
[13] [13] LIU X, GALFSKY T, SUN Z, et al. Strong light-matter coupling in two-dimensional atomic crystals[J]. Nature Photonics, 2015, 9(1):30-34. DOI: 10.1038/nphoton.2014.304.
[14] [14] FLATTEN L C, HE Z, COLES D M, et al. Room-temperature exciton-polaritons with two-dimensional WS2[J]. Scientific Reports, 2016, 6(1):33134. DOI: 10.1038/srep33134.
[15] [15] SCHNEIDER C, GLAZOV M M, KORN T, et al. Two-dimensional semiconductors in the regime of strong light-matter coupling[J]. Nature Communications, 2018, 9(1):2695. DOI: 10.1038/s41467-018-04866-6.
[16] [16] CASTELLANOS G W, MURAI S, RAZIMAN T V, et al. Exciton-Polaritons with Magnetic and Electric Character in All-Dielectric Metasurfaces[J]. ACS Photonics, 2020, 7(5):1226-1234. DOI: 10.1021/acsphotonics.0c00063.
[17] [17] KUSCH P, MUELLER N S, HARTMANN M T, et al. Strong light-matter coupling in MoS2[J]. Physical Review B, 2021, 103(23):235409. DOI: 10.1103/PhysRevB.103.235409.
[18] [18] SILVEIRO I, MANJAVACAS A, THONGRATTANASIRI S, et al. Plasmonic energy transfer in periodically doped graphene[J]. New Journal of Physics, 2013, 15(3):033042. DOI: 10.1088/1367-2630/15/3/033042.
[19] [19] ZENGIN G, WERSLL M, NILSSON S, et al. Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions[J]. Physical Review Letters, 2015, 114(15):157401. DOI: 10.1103/PhysRevLett.114.157401.
[20] [20] PANDYA R, CHEN R Y S, GU Q, et al. Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors[J]. Nature Communications, 2021, 12(1):6519. DOI: 10.1038/s41467-021-26617-w.
[21] [21] COLES D M, SOMASCHI N, MICHETTI P, et al. Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity[J]. Nature Materials, 2014, 13(7):712-719. DOI: 10.1038/nmat3950.
[22] [22] SANVITTO D, KNA-COHEN S. The road towards polaritonic devices[J]. Nature Materials, 2016, 15(10):1061-1073. DOI: 10.1038/nmat4668.
[23] [23] SHI J, LIN M-H, CHEN I T, et al. Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton[J]. Nature Communications, 2017, 8(1):35. DOI: 10.1038/s41467-017-00048-y.
[24] [24] MOXLEY F I, ILO-OKEKE E O, MUDALIAR S, et al. Quantum technology applications of exciton-polariton condensates[J]. Emergent Materials, 2021, 4(4):971-988. DOI: 10.1007/s42247-021-00200-x.
[25] [25] YU M-W, ISHII S, LI S, et al. Quantifying photoinduced carriers transport in exciton-polariton coupling of MoS2 monolayers[J]. Npj 2D Materials and Applications, 2021, 5(1):47. DOI: 10.1038/s41699-021-00227-y.
[26] [26] BHASKAR S, VISWESWAR KAMBHAMPATI N S, GANESH K M, et al. Metal-Free, Graphene Oxide-Based Tunable Soliton and Plasmon Engineering for Biosensing Applications[J]. ACS Applied Materials & Interfaces, 2021, 13(14):17046-17061.DOI: 10.1021/acsami.1c01024.
[27] [27] MAURYA J B, PRAJAPATI Y K, SINGH V, et al. Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS2 hybrid structure with TiO2-SiO2 composite layer[J]. Applied Physics A, 2015, 121(2):525-533. DOI: 10.1007/s00339-015-9442-3.
[28] [28] WANG X, WANG J, HU Z-D, et al. Modulating Plasmonic Sensor with Graphene-Based Silicon Grating[J]. Plasmonics, 2017, 12(6):1725-1731. DOI: 10.1007/s11468-016-0439-3.
[29] [29] LI Z Q, HENRIKSEN E A, JIANG Z, et al. Dirac charge dynamics in graphene by infrared spectroscopy[J]. Nature Physics, 2008, 4(7):532-535. DOI: 10.1038/nphys989.
[30] [30] COX J D, GARCA DE ABAJO F J. Single-Plasmon Thermo-Optical Switching in Graphene[J]. Nano Letters, 2019, 19(6):3743-3750. DOI: 10.1021/acs.nanolett.9b00879.
[31] [31] TANG H, MENABDE S G, ANWAR T, et al. Photo-modulated optical and electrical properties of graphene Nanophotonics[J]. 2022, 11(5):917-940. DOI: doi:10.1515/nanoph-2021-0582.
[32] [32] BONACCORSO F, SUN Z, HASAN T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9):611-622. DOI: 10.1038/nphoton.2010.186.
[33] [33] CHEN J, BADIOLI M, ALONSO-GONZLEZ P, et al. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 2012, 487(7405):77-81. DOI: 10.1038/nature11254.
[34] [34] KONSTANTATOS G, BADIOLI M, GAUDREAU L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6):363-368. DOI: 10.1038/nnano.2012.60.
[35] [35] TISLER J, OECKINGHAUS T, STHR R J, et al. Single Defect Center Scanning Near-Field Optical Microscopy on Graphene[J]. Nano Letters, 2013, 13(7):3152-3156. DOI: 10.1021/nl401129m.
[36] [36] ALONSO-GONZLEZ P, NIKITIN A Y, GOLMAR F, et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns[J]. Science, 2014, 344(6190):1369-1373. DOI: 10.1126/science.1253202.
[37] [37] GARCA DE ABAJO F J. Graphene Plasmonics: Challenges and Opportunities[J]. ACS Photonics, 2014, 1(3):135-152. DOI: 10.1021/ph400147y.
[38] [38] CHRISTENSEN T, WANG W, JAUHO A-P, et al. Classical and quantum plasmonics in graphene nanodisks: Role of edge states[J]. Physical Review B, 2014, 90(24):241414. DOI: 10.1103/PhysRevB.90.241414.
[39] [39] ESTRECHO E, PIECZARKA M, WURDACK M, et al. Low-Energy Collective Oscillations and Bogoliubov Sound in an Exciton-Polariton Condensate[J]. Physical Review Letters, 2021, 126(7):075301. DOI: 10.1103/PhysRevLett.126.075301.
[40] [40] DELGA A, FEIST J, BRAVO-ABAD J, et al. Quantum Emitters Near a Metal Nanoparticle: Strong Coupling and Quenching[J]. Physical Review Letters, 2014, 112(25):253601. DOI: 10.1103/PhysRevLett.112.253601.
[41] [41] TRM P, BARNES W L. Strong coupling between surface plasmon polaritons and emitters: a review[J]. Reports on Progress in Physics, 2014, 78(1):013901. DOI: 10.1088/0034-4885/78/1/013901.
[42] [42] KARANIKOLAS V D, MAROCICO C A, BRADLEY A L. Tunable and long-range energy transfer efficiency through a graphene nanodisk[J]. Physical Review B, 2016, 93(3):035426. DOI: 10.1103/PhysRevB.93.035426.
[43] [43] BARANOV D G, WERSLL M, CUADRA J, et al. Novel Nanostructures and Materials for Strong Light-Matter Interactions[J]. ACS Photonics, 2018, 5(1):24-42. DOI: 10.1021/acsphotonics.7b00674.
[44] [44] KARANIKOLAS V, TOZMAN P, PASPALAKIS E. Light-matter interaction of a quantum emitter near a half-space graphene nanostructure[J]. Physical Review B, 2019, 100(24):245403. DOI: 10.1103/PhysRevB.100.245403.
[45] [45] KARANIKOLAS V. Quantum emitter interacting with a h-BN layer in the strong-coupling regime[J]. Physical Review B, 2020, 102(7):075446. DOI: 10.1103/PhysRevB.102.075446.
[46] [46] KARANIKOLAS V, THANOPULOS I, PASPALAKIS E. Strong coupling in a two-dimensional semiconductor/noble metal multilayer platform[J]. Physical Review Research, 2020, 2(3):033141. DOI: 10.1103/PhysRevResearch.2.033141.
[47] [47] GAO Q, LIN Z, LI X, et al. Spontaneous surface plasmon polariton decay of band-edge excitons in quantum dots near a metal surface[J]. Physical Review B, 2021, 103(3):035416. DOI: 10.1103/PhysRevB.103.035416.
[48] [48] GONZALEZ-TUDELA A, RODRGUEZ F J, QUIROGA L, et al. Dissipative dynamics of a solid-state qubit coupled to surface plasmons: From non-Markov to Markov regimes[J]. Physical Review B, 2010, 82(11):115334. DOI: 10.1103/PhysRevB.82.115334.
[49] [49] HENRIQUES J C G, AMORIM B, PERES N M R. Exciton-polariton mediated interaction between two nitrogen-vacancy color centers in diamond using two-dimensional transition metal dichalcogenides[J]. Physical Review B, 2021, 103(8):085407. DOI:10.1103/PhysRevB.103.085407.
[50] [50] THANOPULOS I, KARANIKOLAS V, ILIOPOULOS N, et al. Non-Markovian spontaneous emission dynamics of a quantum emitter near a MoS2 nanodisk[J]. Physical Review B, 2019, 99(19):195412. DOI: 10.1103/PhysRevB.99.195412.
[51] [51] SINHA K, MEYSTRE P, GOLDSCHMIDT E A, et al. Non-Markovian Collective Emission from Macroscopically Separated Emitters[J]. Physical Review Letters, 2020, 124(4):043603. DOI: 10.1103/PhysRevLett.124.043603.
[52] [52] GONZLEZ-TUDELA A, HUIDOBRO P A, MARTN-MORENO L, et al. Reversible dynamics of single quantum emitters near metal-dielectric interfaces[J]. Physical Review B, 2014, 89(4):041402. DOI: 10.1103/PhysRevB.89.041402.
[53] [53] THANOPULOS I, YANNOPAPAS V, PASPALAKIS E. Non-Markovian dynamics in plasmon-induced spontaneous emission interference[J]. Physical Review B, 2017, 95(7):075412. DOI: 10.1103/PhysRevB.95.075412.
[54] [54] KARANIKOLAS V, THANOPULOS I, COX J D, et al. Quantum surface effects in strong coupling dynamics[J]. Physical Review B, 2021, 104(20):L201405. DOI: 10.1103/PhysRevB.104.L201405.
[55] [55] YING L, MATTEI M S, LIU B, et al. Strong and long-range radiative interaction between resonant transitions[J]. Physical Review Research, 2022, 4(1):013118. DOI: 10.1103/PhysRevResearch.4.013118.
[56] [56] FERREIRA V S, BANKER J, SIPAHIGIL A, et al. Collapse and Revival of an Artificial Atom Coupled to a Structured Photonic Reservoir[J]. Physical Review X, 2021, 11(4):041043. DOI: 10.1103/PhysRevX.11.041043.
[57] [57] GONZLEZ-GUTIRREZ C A, ROMN-ROCHE J, ZUECO D. Distant emitters in ultrastrong waveguide QED: Ground-state properties and non-Markovian dynamics[J]. Physical Review A, 2021, 104(5):053701. DOI: 10.1103/PhysRevA.104.053701.
[58] [58] HUIDOBRO P A, NIKITIN A Y, GONZLEZ-BALLESTERO C, et al. Superradiance mediated by graphene surface plasmons[J]. Physical Review B, 2012, 85(15):155438. DOI: 10.1103/PhysRevB.85.155438.
[59] [59] BONDAREV I V, VLAHOVIC B. Entanglement of a pair of atomic qubits near a carbon nanotube[J]. Physical Review B, 2007, 75(3):033402. DOI: 10.1103/PhysRevB.75.033402.
[60] [60] MARTN-MORENO L, DE ABAJO F J G, GARCA-VIDAL F J. Ultraefficient Coupling of a Quantum Emitter to the Tunable Guided Plasmons of a Carbon Nanotube[J]. Physical Review Letters, 2015, 115(17):173601. DOI: 10.1103/PhysRevLett.115.173601.
[61] [61] SILVEIRO I, JAVIER GARCA DE ABAJO F. Plasmons in inhomogeneously doped neutral and charged graphene nanodisks[J]. Applied Physics Letters, 2014, 104(13):131103. DOI: 10.1063/1.4870046.
[62] [62] GRUNER T, WELSCH D G. Correlation of radiation-field ground-state fluctuations in a dispersive and lossy dielectric[J]. Physical Review A, 1995, 51(4):3246-3256. DOI: 10.1103/PhysRevA.51.3246.
[63] [63] DUNG H T, KNLL L, WELSCH D-G. Three-dimensional quantization of the electromagnetic field in dispersive and absorbing inhomogeneous dielectrics[J]. Physical Review A, 1998, 57(5):3931-3942. DOI: 10.1103/PhysRevA.57.3931.
[64] [64] KARANIKOLAS V D, MAROCICO C A, EASTHAM P R, et al. Near-field relaxation of a quantum emitter to two-dimensional semiconductors: Surface dissipation and exciton polaritons[J]. Physical Review B, 2016, 94(19):195418. DOI: 10.1103/PhysRevB.94.195418.
[65] [65] ABRANTES P P, BASTOS G, SZILARD D, et al. Tuning resonance energy transfer with magneto-optical properties of graphene[J]. Physical Review B, 2021, 103(17):174421. DOI: 10.1103/PhysRevB.103.174421.
[66] [66] ILIOPOULOS N, THANOPULOS I, YANNOPAPAS V, et al. Counter-rotating effects and entanglement dynamics in strongly coupled quantum-emitter-metallic-nanoparticle structures[J]. Physical Review B, 2018, 97(11):115402. DOI: 10.1103/PhysRevB.97.115402.
[67] [67] STOBBE S, KRISTENSEN P T, MORTENSEN J E, et al. Spontaneous emission from large quantum dots in nanostructures: Exciton-photon interaction beyond the dipole approximation[J]. Physical Review B, 2012, 86(8):085304. DOI: 10.1103/PhysRevB.86.085304.
[68] [68] GONZALEZ-TUDELA A, MARTIN-CANO D, MORENO E, et al. Entanglement of Two Qubits Mediated by One-Dimensional Plasmonic Waveguides[J]. Physical Review Letters, 2011, 106(2):020501. DOI: 10.1103/PhysRevLett.106.020501.
[69] [69] VASCO J P, GERACE D, GUIMARES P S S, et al. Steady-state entanglement between distant quantum dots in photonic crystal dimers[J]. Physical Review B, 2016, 94(16):165302. DOI: 10.1103/PhysRevB.94.165302.
[70] [70] AMOOGHORBAN E, ALEEBRAHIM E. Entanglement dynamics of two two-level atoms in the vicinity of an invisibility cloak[J]. Physical Review A, 2017, 96(1):012339. DOI: 10.1103/PhysRevA.96.012339.
[71] [71] SUGAWARA Y, KELF T A, BAUMBERG J J, et al. Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids[J]. Physical Review Letters, 2006, 97(26):266808. DOI: 10.1103/PhysRevLett.97.266808.
[72] [72] ABERRA GUEBROU S, SYMONDS C, HOMEYER E, et al. Coherent Emission from a Disordered Organic Semiconductor Induced by Strong Coupling with Surface Plasmons[J]. Physical Review Letters, 2012, w108(6):066401. DOI: 10.1103/PhysRevLett.108.066401.
[73] [73] LIU Y, HOUCK A A. Quantum electrodynamics near a photonic bandgap[J]. Nature Physics, 2017, 13(1):48-52. DOI: 10.1038/nphys3834.
[74] [74] KRINNER L, STEWART M, PAZMIO A, et al. Spontaneous emission of matter waves from a tunable open quantum system[J]. Nature, 2018, 559(7715):589-592. DOI: 10.1038/s41586-018-0348-z.
[75] [75] KWON J, KIM Y, LANUZA A, et al. Formation of matter-wave polaritons in an optical lattice[J]. Nature Physics, 2022. DOI: 10.1038/s41567-022-01565-4.
Get Citation
Copy Citation Text
JI Feng-zhou, AN Jun-hong. Quantum Plasmon Polariton in Two-dimensional Material[J]. Journal of Quantum Optics, 2023, 29(1): 10801
Received: May. 19, 2022
Accepted: --
Published Online: Nov. 17, 2023
The Author Email: AN Jun-hong (anjhong@lzu.edu.cn)