Journal of Quantum Optics, Volume. 29, Issue 1, 10302(2023)

A Quantum Random Number Generator with Light Source Monitoring Function

FANG Wei, CHEN Yi-peng, ZHOU Yang, ZHANG Chun-hui, and WANG Qin*
Author Affiliations
  • [in Chinese]
  • show less
    References(36)

    [1] [1] GISIN N, RIBORDY G, TITTEL W, et al. Quantum cryptography[J]. Review of Modern Physics, 2001, 74(1):145-195. DOI: 10.1103/revmodphys.74.145.

    [2] [2] GENNARO R. Randomness in cryptography[J]. IEEE Security and Privacy Magazine, 2006, 4(2):64-67.

    [3] [3] FERRENBERG A M, LANDAU D P, WONG Y J. Monte Carlo simulations: Hidden errors from “good” random number generators[J]. Physical Review Letters, 1992, 69(23):3382. DOI: 10.1103/physrevlett.69.3382.

    [4] [4] MA X, YUAN X, CAO Z, et al. Quantum random number generation[J]. Npj Quantum Information, 2016, 2(1):16021.

    [5] [5] HERRERO-COLLANTES M, GARCIA-ESCARTIN J C. Quantum Random Number Generators[J]. Review of Modern Physics, 2017, 89(1):015004. DOI: 10.1103/RevModPhys.89.015004.

    [6] [6] BERA M N, A ACN, KU M, et al. Randomness in Quantum Mechanics: Philosophy, Physics and Technology[J]. Reports on Progress in Physics, 2016, 80(12):124001. DOI: 10.1088/1361-6633/aa8731.

    [7] [7] JENNEWEIN T, ACHLEITNER U, WEIHS G, et al. A fast and compact quantum random number generator[J]. Review of Scientific Instruments, 2000, 71:1675. DOI: 10.1063/1.1150518.

    [8] [8] STEFANOV A, GISIN N, GUINNARD O, et al. Optical quantum random number generator [J]. Journal of Modern Optics, 2000, 47(4):595-598. DOI: 10.48550/arXiv.quant-ph/9907006.

    [9] [9] WAYNE M A, KWIAT P G. Low-bias high-speed quantum random number generator via shaped optical pulses [J]. Optics Express, 2010, 18(9):9351-9357. DOI: 10.1364/OE.18.009351.

    [10] [10] MA H Q, XIE Y, WU L A. Random number generation based on the time of arrival of single photons[J]. Applied Optics, 2005, 44(36):7760-7763. DOI: 10.1364/AO.44.007760.

    [11] [11] YAN Q, ZHAO B, LIAO Q, et al. Multi-bit quantum random number generation by measuring positions of arrival photons[J]. Review of Scientific Instruments, 2014, 85(10):615-621. DOI: 10.1063/1.4897485.

    [12] [12] APPLEGATE M J, THOMAS O, DYNES J F, et al. Efficient and robust quantum random number generation by photon number detection[J]. Applied Physics Letters, 2015, 107(7):175-179. DOI: 10.1063/1.4928732.

    [13] [13] SYMUL T, ASSAD S M, LAM P K. Real time demonstration of high bitrate quantum random number generation with coherent laser light[J]. Applied Physics Letters, 2011, 98(23):145. DOI: 10.1063/1.3597793.

    [14] [14] ZHANG X G, NIE Y Q, ZHOU H, et al. Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction[J]. Review of entific Instruments, 2016, 87(7):2435. DOI: 10.1063/1.4958663.

    [15] [15] SHEN Y, TIAN L, ZOU H. Practical quantum random number generator based on measuring the shot noise of vacuum states[J]. Physical Review A, 2010, 81(6):063814. DOI: 10.1103/PhysRevA.81.063814.

    [16] [16] GUO H, TANG W, LIU Y, AND WEI W. Truly Random Number Generation Based on Measurement of Phase Noise of a Laser[J]. Physical Review E, 2010, 81(5):051137. DOI: 10.1103/PhysRevE.81.051137.

    [17] [17] C ABELLN, AMAYA W, JOFRE M, et al. Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode[J]. Optics Express, 2014, 22(2):1645-1654. DOI: 10.1364/OE.22.001645.

    [18] [18] NIE Y Q, HUANG L, LIU Y, et al. The generation of 68 Gbps quantum random number by measuring laser phase fluctuations[J]. Review of entific Instruments, 2015, 86(6):2435. DOI: 10.1063/1.4922417.

    [19] [19] ZHENG Z, ZHANG Y, HUANG W, YU S, AND GUO H. 6 gbps real-time optical quantum random number generator based on vacuum fluctuation[J]. Review of Scientific Instruments, 2019, 90(4):043105. DOI: 10. 1063 /1. 50 78547.

    [20] [20] LAC N, PATRICK R, MENG S Y, et al. Programmable quantum random number generator without postprocessing[J]. Optics Letters, 2018, 43(4):631. DOI: 10.1364/OL.43.000631.

    [21] [21] GALLEGO R, BRUNNER N, HADLEY C, et al. Device-independent tests of classical and quantum dimensions[J]. Physical Review Letters, 2010, 105(23): 230501. DOI: 10.1103/PhysRevLett.105.230501.

    [22] [22] PIRONIO S, ACIN A , MASSAR S, et al. Random Numbers Certified by Bell’s Theorem[J]. Nature, 2010, 464(7291):1021.

    [23] [23] LIU Y, YUAN X, LI M, et al. High-Speed Device-Independent Quantum Random Number Generation without a Detection Loophole[J]. Physical Review Letters, 2018, 120(1):010503. DOI: 10.1103/PhysRevLett.120.010503

    [24] [24] BOWLES J, QUINTINO M T, BRUNNER N. Certifying the dimension of classical and quantum systems in a prepare-and-measure scenario with independent devices[J]. Physical Review Letters, 2014, 112(14):140407. DOI: 10.1103/PhysRevLett.112.140407.

    [25] [25] LUNGHI T, BRASK J B, LIM C C W, et al. Self-testing quantum random number generator[J]. Physical Review Letters, 2015, 114(15):150501. DOI: 10.1103/physrevlett.114.150501.

    [26] [26] NIE Y Q, GUAN J Y, ZHOU H, et al. Experimental measurement-device-independent quantum random-number generation[J]. Physical Review A, 2016, 94(6):060301. DOI: 10.1103/PhysRevA.94.060301.

    [27] [27] CAO Z, ZHUO H, MA X. Loss-tolerant measurement-device-independent quantum random number generation[J]. New Journal of Physics, 2015, 17(12):125011. DOI: 10.1088/1367-2630/17/12/125011.

    [28] [28] SMITH P R, MARANGON D G, LUCAMARINI M, et al. Simple source device-independent continuous-variable quantum random number generator[J]. Physical Review A, 2019, 99(6):062326. DOI: 10.1103/ Phys RevA.99.062326

    [29] [29] MARANGON D G, VALLONE G, VILLORESI P. Source-Device-Independent Ultrafast Quantum Random Number Generation[J]. Physical Review Letters, 2017, 118(6):060503. DOI: 10.1103/PhysRevLett.118.060503.

    [30] [30] CAO Z, ZHOU H, YUAN X, et al. Source-Independent Quantum Random Number Generation[J]. Physical Review X, 2016, 6(1):011020. DOI: 10.1103/PhysRevX.6.011020.

    [31] [31] PASSARO E, CAVALCANTI D, SKRZYPCZYK P, et al. Optimal randomness certification in the quantum steering and prepare-and-measure scenarios[J]. New Journal of Physics, 2015, 17(11):113010. DOI: 10.1088/1367-2630/17/11/113010.

    [32] [32] HAN S S, DING H J, ZHANG C H, et al. Practical decoy-state quantum random number generator with weak coherent sources[J]. Quantum Information Processing, 2020, 19(11):1-9. DOI: 10.1007/s11128-020-02902-3.

    [33] [33] GAN W, LI Z, QIAO Y, et al. Light Source Monitoring in Quantum Key Distribution with Signle Photon Detector at Room Temperature[J]. IEEE Journal of Quantum Electronics, 2018, 54(3):1-10. DOI: 10.1109 /JQE.2018.2827569.

    [34] [34] QIAO Y C, WANG G, LI Z Y, et al. Monitoring an untrusted light source with single-photon detectors in measurement-device-independent quantum key distribution[J]. Physical Review A, 2019, 99(5):052302. DOI: 10.1088 /1367-2630/ab54aa.

    [35] [35] MAO C C, LI J, ZHU J R, et al. An improved proposal on the practical quantum key distribution with biased basis[J]. Quantum Information Processing, 2017, 16:256. DOI: 10.1007/s11128-017-1707-7.

    [36] [36] QIAO Y, CHEN Z, ZHANG Y, et al. Sending-or-Not-Sending Twin-Field Quantum Key Distribution with Light Source Monitoring[J]. Entropy, 2019, 22(1):36. DOI: 10.3390/e22010036.

    Tools

    Get Citation

    Copy Citation Text

    FANG Wei, CHEN Yi-peng, ZHOU Yang, ZHANG Chun-hui, WANG Qin. A Quantum Random Number Generator with Light Source Monitoring Function[J]. Journal of Quantum Optics, 2023, 29(1): 10302

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 31, 2022

    Accepted: --

    Published Online: Nov. 17, 2023

    The Author Email: WANG Qin (qinw@njupt.edu.cn)

    DOI:10.3788/jqo20232901.0302

    Topics