Journal of Quantum Optics, Volume. 28, Issue 4, 326(2022)

The Effect of Optical Depth on Retrieval Efficiency of Cavity-Enhanced Quantum Memory Based on Cold Atomic Ensemble

XIE Yan1,2、*, WANG Min-jie1,2, LIU Hai-long1,2, MA Teng-fei1,2, JIAO Hao-le1,2, FAN Wen-xin1,2, LU Jia-jin1,2, LI Shu-jing1,2, and WANG Hai1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(27)

    [1] [1] KNILL E, LATFLAMME R, MILBUM G J. A scheme for efficient quantum computation with linear optics[J]. Nature, 2001, 409(6816):46-52. DOI: 10.1038/35051009.

    [2] [2] KOK P, NEMOTO K, RALPH T C, et al. Linear optical quantum computing with photonic qubits[J]. Reviews of Modern Physics, 2007, 79:135-174. DOI: 10.1103/RevModPhys.79.135.

    [3] [3] NICOLAS SANGOUARD, CHRISTOPH SIMON, HUGESDE RIEDMATTEN, et al. Quantum repeaters based on atomic ensembles and linear optics[J]. Review of Modern Physics, 2011, 83(1):33-34. DOI: 10.1103/Rev-ModPhys.83.33.

    [4] [4] BRIEGEL H J, DUR, W, et al. Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication[J]. Phys Rev Lett, 1998, 81(26):5932-5935. DOI: 10.1103/PhysRevLett.81.5932.

    [5] [5] ZOLLER P, BETH T, BINOSI D, et al. Quantum information processing and communication[J]. The European Physical Journal D | Atomic, Molecular, Optical and Plasma Physics, 2005, 36(2):203-228. DOI: 10.1140/ epjd /e2005-00251-1.

    [6] [6] KIMBLE H J. The Quantum Internet[J]. Nature, 2008, 453(7198):1023-1030. DOI: 10.1038/nature07127.

    [7] [7] DUAN L M, LUKIN M D, CIRAC J I, et al. Long-distance quantum communication with atomic ensembles and linear optics[J]. Nature, 2001, 414(6862):413-418. DOI: 10.1038/35106500.

    [8] [8] GIOVANNETTI V, LLOYED S, MACCONE L. Advances in quantum metrology[J]. Nature Photonics, 2011, 96(4):222-229. DOI: 10.1038/nphoton.2011.35.

    [9] [9] BERTA, MARIO, CHRISTANDL, et al. The uncertainty principle in the presence of quantum memory[J]. Nature Physics, 2010, 6:659-662. DOI: 10.1038/nphys1734.

    [10] [10] EISAMAN MD, ANDRE A, MASSOU F. et al. Electromagnetically induced transparency with tunable single-photon pulses[J]. Nature, 2005, 438(7069):837-841. DOI: 10.1038/nature04327.

    [11] [11] HUGUES DE R, MIKAEIA, MATTHIAS U S, et al. A solid state light-matter interface at the single photon level[J]. Nature, 2008, 456(7223):773. DOI: 10.1038/nature07607.

    [12] [12] TITTEI W, AFZELIUS M, T. CHANELIERE, et al. Photon-echo quantum memory in solid state systems[J]. Laser & Photonics Reviews, 2010, 4(2):244-267. DOI: 10.1002/lpor.200810056.

    [13] [13] DUAN L M, MONROE C. Colloquium: Quantum networks with trapped ions[J]. Review of Modern Physics, 2010, 82(2):1209-1224. DOI: 10.1103/RevModPhys.82.1209.

    [14] [14] SPECHT, HOLGER, P, et al. A single-atom quantum memory[J]. Nature, 2011, 473(7346):190193. DOI: 10.1038/nature09997.

    [15] [15] ZHAO R, DUADIN Y O, JENKINS S D, et al. Long-lived quantum memory[J]. Nature Physics, 2009, 5(2):100-104. DOI: 10.1038/nphys1152.

    [16] [16] BAO X H, REINGRUBER A, DIETRICH P, et al. Efficient and long-lived quantum memory with cold atoms inside a ring cavity[J]. Nature Physics, 2012, 8(7):517-521. DOI: 10.1038/nphys2324.

    [17] [17] GISINN, THEW R. Quantum communication[J]. Nature Photonics, 2006, 55(2):298-303. DOI: 10.10-38/nphoton.2007.22.

    [18] [18] MURALIDHARAN S, KIM J, LUETKENHAUS N, et al. Ultrafast and Fault-Tolerant Quantum Communication across Long Distances[J]. Physical Review Letters, 2014, 112(25):250501. DOI: 10.1103/PhysRevLett.112.250501.

    [19] [19] SHI BS, DING DS, ZHNG W, et al. Raman protocol-based quantum memories[J]. Acta Phys Sin, 2019, 68(3):1-18. DOI: 10.7498/aps.68.20182215.

    [20] [20] PHILLIPS N B ,GORSHKOV A V,NOVIKOVA I. Optimal light storage in atomic vapor[J]. Physical Review A, 2008, 78(2):3674-3690. DOI: 10.1103/PhysRevA.78.023801.

    [21] [21] VERNAZ Gris P, HUANG K, CAO M, et al. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble[J]. Nat Commun, 2018, 9(1):363. DOI: 10.1038/s41467-017-02775-8.

    [22] [22] WANG Y, LI J, ZHANG S, SU K, et al. Efficient quantum memory for single-photon polarization qubits[J]. Nat Photonics, 2019, 13(5):346-351. DOI: 10.1038/s41566-019-0368-8.

    [23] [23] YANG S J, WANG X J, BAO X H, PAN J W. An efficient quantum light-matter interface with sub-second lifetime[J]. Nat Photonics, 2016, 10(6):381-384. DOI: 10.1038/nphoton.2016.51.

    [24] [24] BAO X H, REINGRUBER A, DIETRICH P, et al. Efficient and long-lived quantum memory with cold atoms inside a ring cavity[J], Nature Physics, 2012, 8(7):517-521. DOI: 10.1038/nphys2324.

    [25] [25] YANG S J, WANG X J, LI J R, et al. Highly Retrievable Spin-Wave-Photon Entanglement Source[J]. Phys Rev Lett, 2015, 114:210501. DOI: 10.1103/PhysRevLett.114.210501.

    [27] [27] WANG S Z , WANG M J , WEN Y F, et al. Long-lived and multiplexed atom-photon entanglement interface with feed-forward-controlled readouts[J]. Communications Physics, 2021, 4:1-9. DOI: 10.1038/S42005-021-00670-9.

    [28] [28] DUDIN Y O, LI L, KUZMICH A. Light storage on the time scale of a minute[J]. Physical Review A, 2013, 87:031801(R). DOI: 10.1103/PhysRevA.87.031801.

    Tools

    Get Citation

    Copy Citation Text

    XIE Yan, WANG Min-jie, LIU Hai-long, MA Teng-fei, JIAO Hao-le, FAN Wen-xin, LU Jia-jin, LI Shu-jing, WANG Hai. The Effect of Optical Depth on Retrieval Efficiency of Cavity-Enhanced Quantum Memory Based on Cold Atomic Ensemble[J]. Journal of Quantum Optics, 2022, 28(4): 326

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 29, 2022

    Accepted: --

    Published Online: Mar. 5, 2023

    The Author Email: XIE Yan (x2454900109@163.com)

    DOI:10.3788/jqo20222804.0501

    Topics