Chinese Journal of Lasers, Volume. 48, Issue 15, 1501005(2021)
Fiber Fuse Damage Effect in Fiber Lasers: A Review
[1] Kashyap R. The fiber fuse: from a curious effect to a critical issue: a 25th year retrospective[J]. Optics Express, 21, 6422-6441(2013).
[2] Kashyap R, Blow K J. Observation of catastrophic self-propelled self-focusing in optical fibers[J]. Electronics Letters, 24, 47-49(1988).
[3] Hand D P. Russell P S J. Soliton-like thermal shock-waves in optical fibres: origin of periodic damage tracks[C]. //1988 Fourteenth European Conference on Optical Communication, ECOC 88 (Conf. Publ. No.292), September 11-15, 1988, Brighton, UK, 1, 111-114(1988).
[4] Cong Z. Self-propelled self-focusing effect in optical fibers[J]. Laser & Optoelectronics Progress, 25, 24(1988).
[5] Hand D P, Russell P S. Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse[J]. Optics Letters, 13, 767-769(1988).
[6] Shen J H, Cheng Y F, Shao Z H. Reliability study on the optical fiber communications systems having high launching power[J]. Optical Fiber & Electric Cable and Their Applications, 12-15, 23(2006).
[7] Shuto Y, Yanagi S, Asakawa S et al. Fiber fuse generation in single-mode fiber-optic connectors[J]. IEEE Photonics Technology Letters, 16, 174-176(2004).
[8] Yanagi S, Asakawa S, Nagase R. Characteristics of fibre-optic connector at high-power optical incidence[J]. Electronics Letters, 38, 977-978(2002).
[9] Dawson J W, Messerly M J, Beach R J et al. Ultimate power limits of optical fibers[C]. //Optical Fiber Communication Conference 2010, March 21-25, 2010, San Diego, California, United States, OMO6(2010).
[10] Yang C. Research on large mode field thulium-doped all-fiber laser[D](2018).
[11] Luo Y, Wang X L, Zhang H W et al. Amplified spontaneous emission characteristics and locations of high temperature vulnerable point in fiber amplifiers[J]. Acta Physica Sinica, 66, 234206(2017).
[12] Zheng Z J. Study on thulium-doped fiber laser and its application in all-fiber MIR supercontinuum generation[D](2018).
[13] Zhang H Y, Li Y, Yan D L et al. All-fiber high power supercontinuum generation by cascaded photonic crystal fibers ranging from 370 nm to 2400 nm[J]. IEEE Photonics Journal, 12, 1-8(2020).
[14] Matniyaz T, Kong F T, Kalichevsky-Dong M T et al. 302 W single-mode power from an Er/Yb fiber MOPA[J]. Optics Letters, 45, 2910-2913(2020).
[15] Percival R M, Sikora E S R, Wyatt R. Catastrophic damage and accelerated ageing in bent fibres caused by high optical powers[J]. Electronics Letters, 36, 414-416(2000).
[16] Logunov S L. DeRosa M E. Effect of coating heating by high power in optical fibres at small bend diameters[J]. Electronics Letters, 39, 897-898(2003).
[17] Seo K, Nishimura N, Shiino M et al. Evaluation of high-power endurance in optical fiber links[J]. Furukawa Review, 17-22(2003).
[18] Wang J, Gray S, Walton D et al. Fiber fuse in high-power optical fiber[J]. Proceedings of SPIE, 7134, 71342E(2008).
[19] Kurokawa K. Optical fiber for high-power optical communication[J]. Crystals, 2, 1382-1392(2012).
[20] Vázquez C, López-Cardona J D, Lallana P C et al. Multicore fiber scenarios supporting power over fiber in radio over fiber systems[J]. IEEE Access, 7, 158409-158418(2019).
[21] Jiang S L. Weakly-coupled space division multiplexing optical fibers and key components for large-capacity optical fiber communication[D](2019).
[22] Huang A Q, Li R P, Egorov V et al. Laser-damage attack against optical attenuators in quantum key distribution[J]. Physical Review Applied, 13, 034017(2020).
[23] Davis D D, Jr, Mettler S C, DiGiovanni D J. Experimental data on the fiber fuse[J]. Proceedings of SPIE, 2714, 202-210(1996).
[24] Davis D D, Jr, Mettler S C, DiGiovanni D J. Comparative evaluation of fiber fuse models[J]. Proceedings of SPIE, 2966, 592-606(1997).
[25] Bufetov I A, Frolov A A, Shubin A V et al. Propagation of an optical discharge through optical fibres upon interference of modes[J]. Quantum Electronics, 38, 441-444(2008).
[26] Shuto Y, Yanagi S, Asakawa S et al. Fiber fuse phenomenon in triangular-profile single-mode optical fibers[J]. Journal of Lightwave Technology, 24, 846-852(2006).
[27] Mizuno Y, Hayashi N, Tanaka H et al. Observation of polymer optical fiber fuse[J]. Applied Physics Letters, 104, 043302(2014).
[28] Dianov E M, Bufetov I A, Frolov A A et al. Fiber fuse effect in microstructured fibers[J]. IEEE Photonics Technology Letters, 16, 180-181(2004).
[29] Ha W, Jeong Y, Oh K. Fiber fuse effect in hollow optical fibers[J]. Optics Letters, 36, 1536-1538(2011).
[30] Hanzawa N, Kurokawa K, Tsujikawa K et al. New propagation mode of fiber fuse with a long-period damage track in hole-assisted fiber (HAF)[C]. //Optical Fiber Communication Conference 2010, March 21-25, 2010, San Diego, California, United States, OMO5(2010).
[31] Hanzawa N, Kurokawa K, Tsujikawa K et al. Observation of a propagation mode of a fiber fuse with a long-period damage track in hole-assisted fiber[J]. Optics Letters, 35, 2004-2006(2010).
[32] Bufetov I, Kolyadin A, Yatsenko Y et al. Fiber fuse effect in hollow-core and solid core optical fibers: comparison[C]. //Advanced Solid State Lasers 2019, September 29-October 3, 2019, Vienna, Austria, JW2A, 28(2019).
[33] Hanzawa N, Kurokawa K, Tsujikawa K et al. Suppression of fiber fuse propagation in hole assisted fiber and photonic crystal fiber[J]. Journal of Lightwave Technology, 28, 2115-2120(2010).
[34] Xing S D, Kharitonov S, Hu J Q et al. Fiber fuse in chalcogenide photonic crystal fibers[J]. Optics Letters, 43, 1443-1446(2018).
[35] Xing S D, Kharitonov S, Hu J Q et al. Fiber fuse in GeAsSe photonic crystal fiber and its impact on undamaged segment[C]. //Conference on Lasers and Electro-Optics 2018, May 13-18, 2018, San Jose, California, JTh2A, 93(2018).
[36] Zhang H W, Zhou P, Wang X L et al. Fiber fuse effect in high-power double-clad fiber laser[C]. //Conference on Lasers and Electro-Optics/Pacific Rim 2013, June 30-July 4, 2013, Kyoto, Japan, WPD_4(2013).
[37] Sun J Y, Xiao Q R, Li D et al. Fiber fuse behavior in kW-level continuous-wave double-clad field laser[J]. Chinese Physics B, 25, 014204(2016).
[38] Xiao Q R, Tian J D, Huang Y S et al. Internal features of fiber fuse in a Yb-doped double-clad fiber at 3 kW[J]. Chinese Physics Letters, 35, 054201(2018).
[39] Domingues F, Frias A R, Antunes P et al. Observation of fuse effect discharge zone nonlinear velocity regime in erbium-doped fibres[J]. Electronics Letters, 48, 1295-1296(2012).
[40] Dianov E M, Bufetov I A, Frolov A A et al. Catastrophic destruction of fluoride and chalcogenide optical fibres[J]. Electronics Letters, 38, 783-784(2002).
[41] Dianov E M, Bufetov I A, Frolov A A et al. Catastrophic destruction of optical fibres of various composition caused by laser radiation[J]. Quantum Electronics, 32, 476-478(2002).
[42] Dianov E M, Bufetov I A, Frolov A A. Catastrophic damage in specialty optical fibers under CW medium-power laser radiation[J]. Journal of Optics, 33, 171-180(2004).
[43] Xing S D, Kharitonov S, Hu J Q et al. Study of fiber fuse induced damage in chalcogenide photonic crystal fibers[C]. //Laser Congress 2018 (ASSL), November 4-8, 2018, Boston, Massachusetts, ATh1A, 4(2018).
[44] Mizuno Y, Hayashi N, Tanaka H et al. Propagation mechanism of polymer optical fiber fuse[J]. Scientific Reports, 4, 4800(2014).
[45] Mizuno Y, Hayashi N, Tanaka H et al. First observation of fiber fuse phenomenon in polymer optical fibers[J]. Proceedings of SPIE, 9157, 9157AI(2014).
[47] Driscoll T J, Calo J M, Lawandy N M. Explaining the optical fuse[J]. Optics Letters, 16, 1046-1048(1991).
[48] Todoroki S I. In-situ observation of fiber-fuse propagation[J]. Japanese Journal of Applied Physics, 44, 4022-4024(2005).
[49] Dianov E M, Fortov V E, Bufetov I A et al. Temperature of optical discharge under action of laser radiation in silica-based fibers[C]. //2005 31st European Conference on Optical Communication, ECOC 2005, September 25-29, 2005, Glasgow, 469-470(2005).
[50] Dianov E M, Fortov V E, Bufetov I A et al. High-speed photography, spectra, and temperature of optical discharge in silica-based fibers[J]. IEEE Photonics Technology Letters, 18, 752-754(2006).
[51] Shuto Y, Yanagi S, Asakawa S et al. Simulation of fiber fuse phenomenon in single-mode optical fibers[J]. Journal of Lightwave Technology, 21, 2511(2003).
[52] Jiang S L, Ma L, Wang S et al. Mode-interference-induced oscillation in propagation speed of fiber fuse in few-mode fibers[J]. Optics Letters, 43, 4252-4255(2018).
[53] Jiang S L, Ma L, Wang S et al. Real-time observation of microsecond-order periodic velocity change of fiber fuse using heterodyne detection[C]. //CLEO: Science and Innovations 2017, May 14-19, 2017, San Jose, CA, USA, STh4K, 2(2017).
[54] Rocha A M, André P S, Domingues F et al. Reflected light from the fiber fuse propagation[C]. //2011 IEEE EUROCON-International Conference on Computer as a Tool, April 27-29, 2011, Lisbon, Portugal., 1-3(2011).
[55] André P S, Domingues F, Facão M et al. Optical fuse discharge temperature determination employing the cie color coordinates[C]. //Conference on Lasers and Electro-Optics/Pacific Rim 2011, August 28-September 1, 2011, Sydney, Australia, C491(2011).
[56] Bufetov I A, Frolov A A, Efremov V P et al. Fast optical discharge propagation through optical fibres under kW-range laser radiation[C]. //2005 31st European Conference on Optical Communication, ECOC 2005, September 25-29, 2005, Glasgow, 6, 39-40(2005).
[57] Frolov A A, Bufetov I A, Efremov V P et al. Optical discharge in silica-based fibers: high-speed propagation under kW-range laser radiation[J]. Proceedings of SPIE, 6193, 61930W(2006).
[58] Efremov V P, Frolov A A, Dianov E M et al. Dynamics of laser-induced shock wave in silica: dynamika laserowa indukowana W fali uderzeniowej W krzemionce[J]. Archives of Metallurgy and Materials, 59, 1599-1603(2014).
[59] Fortov V E, Khishchenko K V, Karamurzov B S et al. XXX international conference on interaction of intense energy fluxes with matter[J]. Journal of Physics: Conference Series, 653, 011001(2015).
[60] Lee J, Lee K H, Jeong H et al. A study of the fiber fuse in single-mode 2-kW-class high-power fiber amplifiers[J]. Korean Journal of Optics and Photonics, 31, 7(2020).
[61] Jiang S, Ma L, Fan X et al. Real-time locating and speed measurement of fibre fuse using optical frequency-domain reflectometry[J]. Scientific Reports, 6, 25585(2016).
[62] Atkins R M, Simpkins P G, Yablon A D. Track of a fiber fuse: a Rayleigh instability in optical waveguides[J]. Optics Letters, 28, 974-976(2003).
[63] Yamada M, Koyama O, Katsuyama Y et al. Heating and burning of optical fiber by light scattered from bubble train formed by optical fiber fuse[C]. //2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, March 6-10, 2011, Los Angeles, CA, USA., 1-3(2011).
[64] Todoroki S I. Origin of periodic void formation during fiber fuse[J]. Optics Express, 13, 6381-6389(2005).
[65] Todoroki S. Transient propagation mode of fiber fuse leaving no voids[J]. Optics Express, 13, 9248-9256(2005).
[66] Yakovlenko S I. Plasma behind the front of a damage wave and the mechanism of laser-induced production of a chain of caverns in an optical fibre[J]. Quantum Electronics, 34, 765-770(2004).
[67] Todoroki S I. Fiber fuse propagation modes in typical single-mode fibers[C]. //Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, March 17-21, 2013, Anaheim, California, JW2A, 11(2013).
[68] Hanzawa N, Tsujikawa K, Kurokawa K et al. Fiber fuse propagation characteristics of LP01 and LP11 modes in few-mode fiber[J]. Journal of Lightwave Technology, 34, 3628-3632(2016).
[69] Kashyap R. High average power effects in optical fibres and devices[J]. Proceedings of SPIE, 4940, 108-117(2003).
[70] Xiao Q R, Tian J D, Yan P et al. Exploring the initiation of fiber fuse[J]. Scientific Reports, 9, 1-10(2019).
[71] Bufetov I A, Frolov A A, Shubin A V et al. Fiber fuse effect: new results on the fiber damage structure[C]. //33rd European Conference and Exhibition on Optical Communication-ECOC 2007, September 16-20, 2007, Berlin, Germany, 1-2(2007).
[72] Abedin K S, Morioka T. Remote detection of fiber fuse propagating in optical fibers[C]. //Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, March 22-26, 2009, San Diego, California, OThD5(2009).
[73] Todoroki S I. Quantitative evaluation of fiber fuse initiation probability in typical single-mode fibers[C]. //Optical Fiber Communication Conference 2015, March 22-26, 2015, Los Angeles, California, United States, W2A, 33(2015).
[74] Todoroki S. Quantitative evaluation of fiber fuse initiation with exposure to arc discharge provided by a fusion splicer[J]. Scientific Reports, 6, 25366(2016).
[75] Kashyap R. History and progress of the fiber fuse[C]. //2012 17th Opto-Electronics and Communications Conference (OECC 2012) Technical Digest, July 1, 2012, Busan, Korea., 807-808(2012).
[77] Shuto Y, Yanagi S, Asakawa S et al. Fiber fuse phenomenon in step-index single-mode optical fibers[J]. IEEE Journal of Quantum Electronics, 40, 1113-1121(2004).
[78] Hamatani K, Kurokawa K, Nozoe S et al. Dopant dependence of fiber fuse propagation threshold[C]. //2019 24th Microoptics Conference (MOC), November 17-20, 2019, Toyama, Japan., 156-157(2019).
[79] Todoroki S. In-situ observation of fiber-fuse ignition[J]. Proceedings of SPIE, 6161, 61610N(2006).
[80] Kashyap R, Sayles A H, Cornwell G F. Heat-flow modeling and visualization of catastrophic self-propagating damage in single-mode optical fibers at low powers[J]. Proceedings of SPIE, 2966, 586-591(1997).
[81] Shuto Y. Evaluation of high-temperature absorption coefficients of ionized gas plasmas in optical fibers[J]. IEEE Photonics Technology Letters, 22, 134-136(2010).
[82] Shuto Y. Cavity formation modeling of fiber fuse in single-mode optical fibers[J]. Advances in OptoElectronics, 2017, 1-11(2017).
[83] Shuto Y. Simulation of fiber fuse phenomenon in photonic crystal fibers[J]. Optical Fiber Technology, 61, 102435(2021).
[84] Tkachev A N, Yakovlenko S I. Calculation of the velocity and threshold of a thermal absorption wave of laser radiation in an optical fibre[J]. Quantum Electronics, 34, 761-764(2004).
[85] Yakovlenko S I. On reasons for strong absorption of light in an optical fibre at high temperature[J]. Quantum Electronics, 34, 787-789(2004).
[87] Yakovlenko S I. Plasma in bright spot and nature of void chain in fiber fuse track[J]. Proceedings of SPIE, 6161, 61610M(2006).
[89] Golyatina R I, Tkachev A N, Yakovlenko S I. Calculation of velocity and threshold for a thermal wave of laser radiation absorption in a fiber optic waveguide based on the two-dimensional nonstationary heat conduction equation[J]. Laser Physics, 14, 1429(2004).
[90] Shuto Y. Evaluation of high-temperature absorption coefficients of ionized gas plasmas in optical fibers[J]. IEEE Photonics Technology Letters, 22, 134-136(2010).
[91] Akhmediev N, Russell P S J, Taki M et al. Heat dissipative solitons in optical fibers[J]. Physics Letters A, 372, 1531-1534(2008).
[92] Ankiewicz A, Chen W, Russell P S et al. Velocity of heat dissipative solitons in optical fibers[J]. Optics Letters, 33, 2176-2178(2008).
[93] Abedin K S, Nakazawa M, Miyazaki T. Backreflected radiation due to a propagating fiber fuse[J]. Optics Express, 17, 6525-6531(2009).
[94] Abedin K S, Miyazaki T, Nakazawa M. Measurements of spectral broadening and Doppler shift of backreflections from a fiber fuse using heterodyne detection[J]. Optics Letters, 34, 3157-3159(2009).
[95] Rocha A M, Antunes P, Domingues F et al. Configuration for detecting the fiber fuse propagation using a FBG sensor[C]. //12th International Conference on Transparent Optical Networks (ICTON), June 27-July 1, 2010, Munich, Germany., 1-4(2011).
[97] André P S, Facão M, Rocha A M et al. Evaluation of the fuse effect propagation in networks infrastructures with different types of fibers[C]. //Optical Fiber Communication Conference 2010, March 21-25, 2010, San Diego, California, United States, JWA10(2010).
[98] Abedin K S, Nakazawa M. Real time monitoring of a fiber fuse using an optical time-domain reflectometer[J]. Optics Express, 18, 21315-21321(2010).
[99] Jiang S L, Ma L, Fan X Y et al. Observation of fiber fuse propagation speed with high temporal resolution using heterodyne detection and time-frequency analysis[J]. Optics Letters, 42, 3355(2017).
[100] Kinoshita T, Sato N, Yamada M. Detection and termination system for optical fiber fuse[C]. //2013 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching, June 30-July 4, 2013, Kyoto, Japan, WS4_6(2013).
[101] Todoroki S I, Inoue S. Optical fuse by carbon-coated TeO2 glass segment inserted in silica glass optical fiber circuit[J]. Japanese Journal of Applied Physics, 43, L256-L257(2004).
[102] Todoroki S I, Inoue S. Observation of blowing out in low loss passive optical fuse formed in silica glass optical fiber circuit[J]. Japanese Journal of Applied Physics, 43, L728-L730(2004).
[103] Hand D P, Birks T A. Single-mode tapers as‘fibre fuse’ damage circuit-breakers[J]. Electronics Letters, 25, 33-34(1989).
[104] Dianov E M, Bufetov I A, Frolov A A. Destruction of silica fiber cladding by the fuse effect[J]. Optics Letters, 29, 1852-1854(2004).
[106] Rocha A M, Fernandes G, Domingues F et al. Fiber fuse effect propagation break using optical fiber taper[C]. //The 16th Opto-Electronics And Communications Conference, OECC 2011, July 4-8, 2011, Kaohsiung, Taiwan, China., 593-594(2011).
[107] Yanagi S, Asakawa S, Kobayashi M et al. Fiber fuse terminator[C]. //CLEO/Pacific Rim 2003. The 5th Pacific Rim Conference on Lasers and Electro-Optics, December 15-19, 2003, Taipei, Taiwan, China.(2003).
[108] Kurokawa K, Hanzawa N. Suppression of fiber fuse propagation and its break in compact fiber fuse terminator[C]. //2013 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching, June 30-July 4, 2013, Kyoto, Japan, WS4_5(2013).
[109] Kurokawa K. Techniques to detect and stop fiber fuses[C]. //Optical Fiber Communication Conference 2014, March 9-13, 2014, San Francisco, California, United States, M3J, 2(2014).
[110] Furuya S, Kurokawa K. Fiber fuse terminator consisting of a step-index multimode fiber spliced with SMFs[J]. IEICE Communications Express, 9, 400-404(2020).
[111] Ishikawa S, Kurokawa K, Hanzawae N et al. Suppression of fiber fuse initiation by amplitude modulation of input light[C]. //2019 24th Microoptics Conference (MOC), November 17-20, 2019, Toyama, Japan., 152-153(2019).
[112] Yan P, Wang X J, Li D et al. High-power 1018 nm ytterbium-doped fiber laser with output of 805 W[J]. Optics Letters, 42, 1193-1196(2017).
[113] Yan P, Wang X J, Wang Z H et al. A 1150-W 1018-nm fiber laser bidirectional pumped by wavelength-stabilized laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-6(2018).
[114] Tian J D, Xiao Q R, Li D et al. Hybrid-structure 1018-nm monolithic single-mode fiber laser producing high power and high efficiency[J]. OSA Continuum, 2, 1138-1147(2019).
[115] Tian J D, Xiao Q R, Li D et al. Suppressing the amplified spontaneous emission in the high-power 1018-nm monolithic fiber laser by decreasing the feedback from the inner reflections[J]. Journal of the Optical Society of America B, 37, 2514-2522(2020).
[116] Wang Z H, Xiao Q R, Huang Y S et al. Dual-wavelength bidirectional pumped high-power Raman fiber laser[J]. High Power Laser Science and Engineering, 7, e5(2019).
[117] Yan P, Wang Z H, Wang X J et al. Beam transmission properties in high power ytterbium-doped tandem-pumping fiber amplifier[J]. IEEE Photonics Journal, 11, 1-12(2019).
[118] Wang Z H, Yan P, Huang Y S et al. An efficient 4-kW level random fiber laser based on a tandem-pumping scheme[J]. IEEE Photonics Technology Letters, 31, 817-820(2019).
[119] Wang Z H, Qi T C, Huang Y S et al. High-power core-pumped quasi 4 kW Raman fiber lasers[C]. //2020 Conference on Lasers and Electro-Optics, May 10-15, 2020, San Jose, CA, USA., 1-2(2017).
[120] Tian J D, Xiao Q R, Li D et al. Tandem-pumped high-power narrow-linewidth fiber laser tunable from 1060-1090 nm[J]. Journal of Lightwave Technology, 38, 1461-1467(2020).
[121] Yu W L, Yan P, Xiao Q R et al. Power scalability of a continuous-wave high-power Er-Yb co-doped fiber amplifier pumped by Yb-doped fiber lasers[J]. Applied Optics, 60, 2046-2055(2021).
[122] Wang Z H, Yu W L, Tian J D et al. 5.1 kW tandem-pumped fiber amplifier seeded by random fiber laser with high suppression of stimulated Raman scattering[J]. IEEE Journal of Quantum Electronics, 57, 1-9(2021).
[123] Tokunaga D, Sato S, Hidai H et al. A novel method of triggering fiber fuse inside glass by optical breakdown and glass drilling as its application[J]. Applied Physics A, 125, 1-9(2019).
[126] Domingues M F, Antunes P, Alberto N et al. Enhanced sensitivity high temperature optical fiber FPI sensor created with the catastrophic fuse effect[J]. Microwave and Optical Technology Letters, 57, 972-974(2015).
[127] Alberto N, Tavares C, Domingues M F et al. Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect[J]. Optical and Quantum Electronics, 48, 1-8(2016).
[128] Domingues M F, Rodriguez C A, Martins J et al. Cost-effective optical fiber pressure sensor based on intrinsic Fabry-Perot interferometric micro-cavities[J]. Optical Fiber Technology, 42, 56-62(2018).
[129] Domingues M F, Antunes P, Alberto N et al. Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect[J]. Measurement, 77, 265-268(2016).
[130] Martins J, Diaz C A R, Domingues M F et al. Low-cost and high-performance optical fiber-based sensor for liquid level monitoring[J]. IEEE Sensors Journal, 19, 4882-4888(2019).
[131] Alberto N, Domingues M F, Belo J H et al. Optical fiber fuse effect based sensor for magnetic field monitoring[J]. Proceedings of SPIE, 11028, 110281S(2019).
[132] Leal-Junior A, Frizera A, Lee H et al. Strain, temperature, moisture, and transverse force sensing using fused polymer optical fibers[J]. Optics Express, 26, 12939-12947(2018).
[133] Leal-Junior A, Frizera A, Lee H et al. Design and characterization of a curvature sensor using fused polymer optical fibers[J]. Optics Letters, 43, 2539-2542(2018).
[134] Leal-Junior A, Frizera A, Pontes M J et al. Dynamic mechanical analysis on fused polymer optical fibers: towards sensor applications[J]. Optics Letters, 43, 1754-1757(2018).
[135] Díaz C A R, Marques C A F, Domingues M F F et al. A cost-effective edge-filter based FBG interrogator using catastrophic fuse effect micro-cavity interferometers[J]. Measurement, 124, 486-493(2018).
[136] Xiao Q R, Tian J D, Li D et al. An efficient non-invasive method to fabricate in-fiber microcavities using a continuous-wave laser[J]. IEEE Photonics Technology Letters, 32, 573-576(2020).
[137] Hall J M M, François A, Afshar V S et al. Determining the geometric parameters of microbubble resonators from their spectra[J]. Journal of the Optical Society of America B, 34, 44-51(2016).
[138] Zhang H W, Zhou P, Wang X L et al. Simulation of fiber optical discharge effect of double cladding fiber[J]. Acta Optica Sinica, 33, 0706015(2013).
Get Citation
Copy Citation Text
Jiading Tian, Qirong Xiao, Dan Li, Zheng Zhang, Haoyu Yin, Ping Yan, Mali Gong. Fiber Fuse Damage Effect in Fiber Lasers: A Review[J]. Chinese Journal of Lasers, 2021, 48(15): 1501005
Category: laser devices and laser physics
Received: Mar. 16, 2021
Accepted: Apr. 15, 2021
Published Online: Jul. 16, 2021
The Author Email: Xiao Qirong (xiaoqirong@mail.tsi)