Optics and Precision Engineering, Volume. 32, Issue 1, 43(2024)

Micron-level processing technology of microlens array (MLA) photolithography based on convolutional neural network

Yuchao YAO1, Rui ZHOU1,2、*, Xing YAN1, Zhenzhong WANG3, and Na GAO4,5
Author Affiliations
  • 1Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen36005,China
  • 2Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
  • 3School of Aerospace Engineering, Xiamen University, Xiamen61102, China
  • 4College of Physical Science and Technology, Xiamen University, Xiamen361005, China
  • 5Jiujiang Research Institute of Xiamen University, Jiujiang332000, China
  • show less
    References(30)

    [1] [1] 陈翔, 杨音. 集成电路全产业链标准数据统计分析[J]. 中国标准化, 2022(6): 33-37. doi: 10.3969/j.issn.1002-5944.2022.06.007CHENX, YANGY. Statistical analysis of the standards data in the whole IC industry chain[J]. China Standardization, 2022(6): 33-37.(in Chinese). doi: 10.3969/j.issn.1002-5944.2022.06.007

    [2] [2] 潘桂忠. 亚微米CMOS芯片与制程剖面结构[J]. 集成电路应用, 2019, 36(3):30-34. doi: 10.19339/j.issn.1674-2583.2019.03.008PANG ZH. Submicron CMOS chips and process profile structure[J]. Applications of IC, 2019, 36(3):30-34.(in Chinese). doi: 10.19339/j.issn.1674-2583.2019.03.008

    [3] [3] 张思琪, 周思翰, 杨卓俊, 等. 基于数字微镜器件的无掩膜光刻技术进展[J]. 光学 精密工程, 2022, 30(1):12-30. doi: 10.37188/OPE.20223001.0012ZHANGS Q, ZHOUS H, YANGZH J, et al. Research progress of maskless lithography based on digital micromirror devices[J]. Opt. Precision Eng., 2022, 30(1):12-30.(in Chinese). doi: 10.37188/OPE.20223001.0012

    [4] TANG M, CHEN Z C, HUANG Z Q et al. Maskless multiple-beam laser lithography for large-area nanostructure/microstructure fabrication[J]. Applied Optics, 50, 6536-6542(2011).

    [5] LECUN Y, BOTTOU L, BENGIO Y et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 86, 2278-2324(1998).

    [6] [6] 卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理, 2016, 31(1):1-17. doi: 10.16337/j.1004-9037.2016.01.001LUH T, ZHANGQ CH. Applications of deep convolutional neural network in computer vision[J]. Journal of Data Acquisition & Processing, 2016, 31(1):1-17.(in Chinese). doi: 10.16337/j.1004-9037.2016.01.001

    [7] [7] 李旭冬, 叶茂, 李涛. 基于卷积神经网络的目标检测研究综述[J]. 计算机应用研究, 2017, 34(10): 2881-2886, 2891. doi: 10.3969/j.issn.1001-3695.2017.10.001LIX D, YEM, LIT. Review of object detection based on convolutional neural networks[J]. Application Research of Computers, 2017, 34(10): 2881-2886, 2891.(in Chinese). doi: 10.3969/j.issn.1001-3695.2017.10.001

    [8] YOON J H, INGALE S L, KIM J S et al. Effects of dietary supplementation of synthetic antimicrobial peptide-A3 and P5 on growth performance, apparent total tract digestibility of nutrients, fecal and intestinal microflora and intestinal morphology in weanling pigs[J]. Livestock Science, 159, 53-60(2014).

    [9] [9] 杨荣坚, 王芳, 秦浩. 基于双目图像的行人检测与定位系统研究[J]. 计算机应用研究, 2018, 35(5): 1591-1595, 1600. doi: 10.3969/j.issn.1001-3695.2018.05.068YANGR J, WANGF, QINH. Research of pedestrian detection and location system based on stereo images[J]. Application Research of Computers, 2018, 35(5): 1591-1595, 1600.(in Chinese). doi: 10.3969/j.issn.1001-3695.2018.05.068

    [10] LUO H, HE M, HUI B et al. Pedestrian detection algorithm based on dual-model fused fully convolutional networks(Invited)[J]. Infrared and Laser Engineering, 47, 203001(2018).

    [11] [11] 芮挺, 费建超, 周遊, 等. 基于深度卷积神经网络的行人检测[J]. 计算机工程与应用, 2016, 52(13):162-166. doi: 10.3778/j.issn.1002-8331.1502-0122RUIT, FEIJ CH, ZHOUY, et al. Pedestrian detection based on deep convolutional neural network[J]. Computer Engineering and Applications, 2016, 52(13):162-166.(in Chinese). doi: 10.3778/j.issn.1002-8331.1502-0122

    [12] [12] 张新钰, 高洪波, 赵建辉, 等. 基于深度学习的自动驾驶技术综述[J]. 清华大学学报(自然科学版), 2018, 58(4): 438-444. doi: 10.16511/j.cnki.qhdxxb.2018.21.010ZHANGX Y, GAOH B, ZHAOJ H, et al. Overview of autopilot technology based on deep learning[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(4): 438-444.(in Chinese). doi: 10.16511/j.cnki.qhdxxb.2018.21.010

    [13] [13] 杨聚圃, 杜佳林, 李凡星, 等. 基于深度学习的数字光刻自动检焦方法[J]. 光子学报, 2022, 51(6): 0611002. doi: 10.3788/gzxb20225106.0611002YANGJ P, DUJ L, LIF X, et al. Deep learning based method for automatic focus detection in digital lithography[J]. Acta Photonica Sinica, 2022, 51(6): 0611002.(in Chinese). doi: 10.3788/gzxb20225106.0611002

    [14] [14] 郭求是. 基于深度学习的光刻热点检测技术研究[D]. 杭州: 浙江大学, 2019.GUOQ SH. Research on Lithography Hot Spot Detection Technology based on Deep Learning[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)

    [15] YU Y T, LIN G H, JIANG I H R et al. Machine-learning-based hotspot detection using topological classification and critical feature extraction[C], 1-6(29).

    [16] HE K M, ZHANG X Y, REN S Q et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916(2015).

    [18] REN S Q, HE K M, GIRSHICK R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [19] GIRSHICK R, DONAHUE J, DARRELL T et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C], 23, 2014(2014).

    [20] LIU W, ANGUELOV D, ERHAN D et al. SSD: Single Shot Multibox Detector[M]. Computer Vision - ECCV 2016, 21-37(2016).

    [21] REDMON J, DIVVALA S, GIRSHICK R et al. You only look once: unified, real-time object detection[C], 27, 779-788(2016).

    [22] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C], 21, 6517-6525(2017).

    [24] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[J]. CoRR(2015).

    [25] WANG C Y, MARK LIAO H Y, WU Y H et al. CSPNet: a new backbone that can enhance learning capability of CNN[C], 14, 2020(2020).

    [26] HE K M, ZHANG X Y, REN S Q et al. Deep residual learning for image recognition[C], 27, 770-778(2016).

    [27] [27] 李敏学. 基于注意力机制的图像显著区域提取算法分析与比较[D]. 北京: 北京交通大学, 2011.LIM X. Analysis and Comparison of Salient Region Extraction Algorithms Based on Attention Mechanism[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese)

    [28] [28] 焦军峰, 靳国旺, 熊新, 等. 旋转矩形框与CBAM改进RetinaNet的SAR图像近岸舰船检测[J]. 测绘科学技术学报, 2020, 37(6): 603-609.JIAOJ F, JING W, XIONGX, et al. SAR images nearshore ship detection based on RetinaNet algorithm with rotated rectangular box[J]. Journal of Geomatics Science and Technology, 2020, 37(6): 603-609.(in Chinese)

    [29] [29] 张世权, 朱斌, 顾霞. 不同衬底材料对光刻胶剖面的影响[J]. 电子与封装, 2013, 13(8): 37-39. doi: 10.3969/j.issn.1681-1070.2013.08.011ZHANGSH Q, ZHUB, GUX. Research of photo resists cross section on different substrate material[J]. Electronics and Packaging, 2013, 13(8): 37-39.(in Chinese). doi: 10.3969/j.issn.1681-1070.2013.08.011

    [30] [30] 韦亚一. 超大规模集成电路先进光刻理论与应用[M]. 北京: 科学出版社, 2016.WEIY Y. Theory and Application of Advanced Lithography for VLSI[M]. Beijing: Science Press, 2016.(in Chinese)

    Tools

    Get Citation

    Copy Citation Text

    Yuchao YAO, Rui ZHOU, Xing YAN, Zhenzhong WANG, Na GAO. Micron-level processing technology of microlens array (MLA) photolithography based on convolutional neural network[J]. Optics and Precision Engineering, 2024, 32(1): 43

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 15, 2023

    Accepted: --

    Published Online: Jan. 23, 2024

    The Author Email: Rui ZHOU (rzhou2@xmu.edu.cn)

    DOI:10.37188/OPE.20243201.0043

    Topics